基于CPLD的CCD驱动模块设计

发布时间:2021-09-13 阅读量:923 来源: 我爱方案网 作者: 我爱方案网整理

总体方案设计:线阵CCD一般不能直接在测量装置中使用,因此 CCD 驱动信号的产生及输出信号的处理是设计高精度、高可靠性和高性价比线阵 CCD 驱动模块的关键。传统驱动 CCD 的设计方法使 CCD 的工作频率较慢,信号输出噪声增大,不利于提高信噪比,不能应用于要求快速测量的场合。而用可编程逻辑器件CPLD进行驱动,则可提高脉冲信号相位关系的精度,以及提供给 CCD 驱动脉冲信号的频率,而且调试容易、灵活性高。目前,在工业技术中,多采用基于 CPLD 的驱动电路实现线阵 CCD 的驱动。系统框图如图 1 所示。


基于CPLD的CCD驱动模块设计

图 1 基于 CPLD 的线阵 CCD 的驱动电路


2 硬件设计

2. 1 CPLD 的硬件电路的设计

以 CPLD( Complex Programmable Logic Device) 器件为核心,设计线阵 CCD 的驱动电路。然后在其基础上扩展,选择其他元器件,设计出与其相配套的电路部分,经调试后组成硬件系统。


CPLD 的电路由 5 部分组成, 有源晶振向 EPM240T100C5N 的 U1A 的 IO/GCLK0 口输入时钟脉冲 CLK0,提供了 CPLD 工作的时钟脉冲,因为时序逻辑的需要。U1C 从 JTAG 端口中下载程序,U1B 的 52、54、56、58 口输出脉冲信号。U1D 管脚接 3. 3 V 电压,U1E 管脚接地。电路原理如图 2 所示。


基于CPLD的CCD驱动模块设计

图 2 CPLD 的电路原理图


2. 2DC /DC模块的设计

为得到 CPLD 所需的电压,外接电源需要经过 DC /DC 模块进行转换。为进一步减少输出纹波,可在输入输出端连接一个 LC 滤波网络,电路原理如图 3 所示。


基于CPLD的CCD驱动模块设计

图 3 DC/DC 模块的电路原理图设计


2. 3 稳压模块的电路设计

由 DC /DC 模块转换的直流电压,经过一个 R11 电阻和一个发光二极管接地,发光二极管指示灯,然后从 AMS 芯片的 Vin 端输入,进入到芯片的内部,经过一系列的计算,从 Vout 输出 3. 3 V 电压,GND 端端口接地。为消除交流电的纹波,电路采用电容滤波,分别用 0. 1 μF 的极性电容和 10 μF 的非极性电容组成一个电容滤波网络。电路原理如图 4 所示。


基于CPLD的CCD驱动模块设计

图 4 稳压模块的电路设计


2. 4 CCD 电路设计

CCD 电路采用 TCD1500C,它是一个高灵敏度、低暗流、5340 像元的线阵图像传感器。其像敏单元大小是 7 μm × 7 μm × 7 μm,相邻像元中心距 7 μm,像元总长 37. 38 mm. 该传感器可用于传真、图像扫描和 OCR.TCD1500C 的测量精度和分辨率都很高,并且只需 4 路驱动信号: SH、φ、RS、SP。电路原理如图 5 所示。


基于CPLD的CCD驱动模块设计

图 5 CCD 模块电路原理图


2. 5 电平转换的电路设计

由于 CPLD 输出的驱动脉冲电压为 3. 3 V,而 CCD 工作所需的驱动脉冲为 5 V,所以需要在 CPLD 和 CCD 之间加入一个电平转换电路。电路原理如图 6 所示。


基于CPLD的CCD驱动模块设计

图 6 电平转换的电路原理图


3 软件设计

系统软件采用 Verilog HDL 硬件描述语言,按照模块化的思路设计,将要完成的任务分成为多个模块,每个模块由一个或多个子函数完成。这样能使设计思路清晰、移植性强,在调试软件时容易发现和改正错误,降低了软件调试的难度。程序中尽量减少子函数之间的相互嵌套调用,这样可以减少任务之间的等待时间,提高系统处理任务的能力[7 - 8]。主程序如图 7 所示。


基于CPLD的CCD驱动模块设计

图 7 主程序流程图


SH 是一个光积分信号,SH 信号的相邻两个脉冲之间的时间间隔代表了积分时间的长短。光积分时间为 5 416 个 RS 周期,对系统时钟进行光积分的分频,实现了 SH 信号脉冲。在光积分阶段,SH 为低电平,它使存储栅和模拟移位寄存器隔离,不会发生电荷转移。时钟脉冲φ 为典型值 0. 5 MHz 时,占空比为 50%,占空比是指高电平在一个周期内所占的时间比率。它是 SH 信号和占空比为 50%的一个 0. 5 MHz 的脉冲信号叠加,所以 0. 5 MHz 的信号和 SH 信号通过一个或门,就可以实现φ 信号; 输出复位脉冲 RS 为 1 MHz,占空比 1∶ 3. 此外,RS 信号和 SH、φ 信号有一定的相位关系,通过一个移位寄存器移相,来实现 RS 脉冲信号。


4 仿真实验

系统时钟周期部分设置为 1 ns,正常工作时复位信号 RS 为高电平,然后对 RS、φ、SH 信号进行仿真,结果如图 8 所示。


基于CPLD的CCD驱动模块设计

图 8 QuartusⅡ仿真效果图



推荐阅读:

基于C8051F350单片机的气体流量计检测仪硬件设计

气体流量计检测仪软件设计

气体流量计信号调整电路

C8051F350单片机的功能特性

基于ARM与FPGA的便携式GNSS信号采集回放系统设计


相关资讯
无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。

拥有卓越性能的高精度超薄低功耗心电贴—YSX211SL

随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。

可编程晶振选型应该注意事项

对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。

性能高的服务器—宽电压有源晶振YSO110TR 25MHZ,多种精度选择支持±10PPM—±30PPM

在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。

差分晶振怎么测量

其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!