发布时间:2025-07-9 阅读量:62 来源: Wolfspeed 发布人: wenwei
【导读】汽车行业正加速向零排放未来转型,但下一代电动车必须超越百年燃油车设定的性能、耐用性和可靠性标杆。为助力汽车制造商快速开发领先的电动车型,Wolfspeed 与恩智浦 (NXP) 强强联合,推出了一款经过全面验证的 800V 牵引逆变器参考设计。该设计融合尖端碳化硅(SiC)技术与高性能控制方案,旨在显著提升电动车效率、续航里程及系统可靠性。
图 1:功率逆变器模块解剖构造
为了支持其汽车合作伙伴并加速汽车电气化进程,Wolfspeed 与恩智浦 (NXP) 携手推出了一款经过全面测试的 800 V 牵引逆变器参考设计。该设计能够帮助电动汽车系统架构师有效克服诸多障碍,包括选择合适的组件以提升系统效率、符合功能安全认证标准,以及确保长期可靠性。
电动汽车牵引逆变器参考设计是一个完整的系统解决方案,包含基于 Arm® Cortex®-M7 的 S32K39 MCU、电源管理符合功能安全标准的 FS26 系统基础芯片,以及最新一代高压隔离栅极驱动器 GD3162。为了完善该系统,设计中还包含 Wolfspeed 1200 V 三相全桥 YM 碳化硅功率模块。
图 2:基于恩智浦 (NXP) 800 V EV -INVERTERGEN3 参考设计和 Wolfspeed 碳化硅功率模块的完整 ECU 解决方案
该电动汽车牵引逆变器参考设计已在 Wolfspeed 慕尼黑实验室通过硬件在环 (HIL) 设置进行了联合测试。在 800 V 电池工作条件下,其峰值功率超过了 300 kW。
图 3:实验室 HIL 设置的测试结果
为最大限度提升效率而设计:动态栅极强度满足不同的功率需求
实验室仿真结果显示,得益于恩智浦 (NXP) 高压栅极驱动器的专用功能,最高效率提升近 1%。该功能使设计人员能够根据实时运行条件动态调整栅极驱动信号强度,从而在效率、开关速度和电磁性能之间实现平衡。根据全球统一轻型车辆测试程序(WLTP) 的一些模型,与传统电动汽车解决方案相比,该设计有望将续航里程增加 14 英里(近 22.5 公里)。
图 4:效率提升增益曲线
全面的功能安全设计理念:确保从器件到系统级功能安全
在 FuSA 方面,合规组件的设计始终以高质量和高可靠性为优先原则。安全性贯穿于设计、制造、文档编制以及技术支持的每一个环节。在电动汽车牵引逆变器参考设计中,采用了符合最高风险等级 ASIL D 的组件,包括恩智浦 (NXP) 的 S32K396 MCU、FS2633 系统基础芯片及 GD3162 高压栅极驱动器。为了进一步简化客户集成流程,设计还提供了一些 FuSa 文档,例如系统安全概念,详细阐释了从假设安全目标到硬件和软件级别的安全要求。
为实现可靠性和长久耐用性而设计:YM 碳化硅功率模块
针对 800 V 牵引逆变器而设计的碳化硅解决方案。相比传统的硅 IGBT,碳化硅材料本质上更可靠、更耐用。Wolfspeed YM 系列车规模块以先进封装技术为支撑,将为系统的长期可靠性注入新的选择。
1200 V 三相全桥YM系列碳化硅功率模块采用直接冷却的铜针翅基板设计,通过将针翅直接浸入冷却剂中,不仅简化了系统组装,还显著提升了热性能。此外,模块使用氮化硅基板,这种坚固的陶瓷材料具有卓越的抗热冲击和耐磨性,有效地将芯片产生的热量快速散发,从而降低系统工作温度。另一个创新的封装特性是烧结芯片粘接技术。这种先进的芯片粘合方法在芯片和氮化硅基板之间建立了牢固的结合,从而确保出色的导热性和机械耐久性,支持更高的功率输出并提供优异的热循环性能。直接冷却铜针翅技术和烧结芯片粘接技术共同提高了热性能和系统使用寿命。
YM 模块通过铜夹片代替传统的焊线,大幅提升了模块的载流能力与功率循环寿命。同时,其优化的端子布局有效降低了封装电感,减少电压过冲,实现了超低开关损耗。为了降低潜在的机械故障风险,车规级 YM 模块采用硬质环氧树脂封装。与凝胶基封装相比,环氧树脂模塑料不仅提供了优异的防潮性能,还具备更强的结构完整性。通过将烧结芯片粘接、铜夹和环氧树脂模塑料相结合,与同类竞争产品相比,模块使用寿命得以延长至 3 倍。
图 5:Wolfspeed 三相全桥 YM 系列碳化硅功率模块
先进的封装技术为车规级的 YM3 功率模块提供了强有力保障,能够有效应对在严苛汽车环境中运行的挑战。这一设计确保了性能的一致性,还赋予了模块卓越的耐用性。
结论
综上所述,Wolfspeed 与恩智浦 (NXP) 共同推出的 800V 牵引逆变器参考设计,不仅是技术合作的典范,更是推动电动车性能跃升的关键工具。其融合的动态栅极强度调节、全面的功能安全保障以及基于先进封装的车规级碳化硅功率模块,为设计者扫清了效率、安全与长期可靠性的核心障碍。这款设计为打造媲美乃至超越燃油车体验的高性能、高能效、安全可靠的下一代电动车提供了坚实基础,加速了汽车电动化的进程。
曾几何时,Dallas公司的DS12C887 RTC芯片凭借断电续航能力,成为设备可靠的“时间守护者”。它能精准计时(秒至年),支持多种编码格式和可编程中断,并集成了备用RAM与方波输出,广泛应用于电脑、家电及工控领域。然而,其DIP24封装的大体积、10μA的典型功耗以及±1分钟/月的精度,在追求小型化、低功耗、高精度的智能穿戴与物联网时代,逐渐显露疲态。
作为电子系统的“心脏”,晶振的稳定度直接关乎时序精度、数据可靠性与系统韧性强健。频差、温漂、老化、相噪、抖动——五大核心指标如同精密的仪表,共同度量着晶振输出的“稳”字诀。一旦失稳,轻则通信卡顿、数据出错,重则时序紊乱、系统瘫痪,后果堪忧。工程师们,如何慧眼识“稳”晶?数据手册参数林林总总,哪些才是关键抓手?
在电机驱动、电动汽车、快速充电和可再生能源系统中,低功耗辅助电源常被视为"幕后功臣"——尽管其功率等级远低于主功率系统,却直接影响着整套设备的可靠性与能效。面对提升可靠性、缩小体积、降低成本、规避供应链风险等多重挑战,设计人员亟需突破传统设计局限的创新解决方案。Wolfspeed全新推出的工业级 C3M0900170x 与车规级认证(AEC-Q101) E3M0900170x 碳化硅MOSFET系列,正为20-200W辅助电源设计提供关键赋能,助力工程师在性能与成本的博弈中开辟新路径。
在当今高速成像应用中,如机器视觉、自主导航、增强/虚拟现实(AR/VR/MR)和条码扫描,传统的卷帘快门图像传感器往往力不从心,会因运动模糊或空间失真严重影响图像质量。为克服这些挑战并精准“冻结”快速运动的物体,具备全局快门特性的先进CMOS图像传感器成为关键选择。安森美深知工程师在为高速应用筛选最优全局快门传感器时需权衡大量参数(如分辨率、光学格式、帧率、功耗、动态范围、全局快门效率GSE及信噪比SNR等)以及高级功能(如同步触发、嵌入式自动曝光、ROI选择),因此开发了创新的Hyperlux SG系列产品。
安森美SiC Combo JFET技术通过创新性集成常开型SiC JFET与低压Si MOSFET,构建出高性能共源共栅(cascode)结构,攻克了SiC器件常开特性的应用瓶颈。该方案兼具SiC材料的高压处理能力、超低导通电阻(RDS(on))与卓越热性能,以及Si MOSFET的易控常关特性,为大电流应用(如固态断路器、高功率开关系统)和多器件并联场景提供突破性的功率密度与效率解决方案。