区域控制架构下低压配电的创新演进与实现路径

发布时间:2025-06-12 阅读量:992 来源: 安森美 发布人: wenwei

【导读】在汽车产业加速向"软件定义汽车(SDV)"转型的浪潮下,汽车制造商正以创新突破传统边界,聚焦于在区域控制器中集成受保护的半导体开关。以电子保险丝与 SmartFET 为代表的新型保护器件,不仅能高效保护负载、传感器和执行器,更从根源上提升了功能安全性,实现对功能故障的快速响应与精准应对。区别于传统域架构将软件分散部署于多个 ECU 的模式,区域控制架构采用集中控制与计算的核心思路——将分散的 ECU 软件统一整合至强大的中央计算机,为下游的电子控制与配电系统赋予了更高的灵活性。


系统描述


电动汽车中的低压配电


低压 (LV) 电网在所有车型中都起着关键作用。 区域控制架构也部署在混合动力系统中, 此处仅重点介绍电动汽车的区域控制架构。 如下面的框图所示, 电力来自高压 (HV) 电池组(通常为 400 V 或 800 V 电池架构) 。 HV-LV DC-DC 转换器将高压降压, 为 LV 网络供电, 通常为48 V 或 12 V 电池架构。 有的汽车只有一种 LV 电池, 有的有两种电池, 每种电池使用单独的转换器, 因制造商和汽车型号而异。


低压配电系统的主要器件


48 V 和 12 V 电网可能共存于同一辆车中,因此 HV-LV 转换器可以直接为 48 V 电池供电,而额外的 48V - 12V 转换器可以充当中间降压级 。在集中式LV配电模式中 ,单个较大的48V - 12V转换器( 约3kW)为12V电池充电 。


相较之下,区域控制架构采用分布式方法,在区域控制器 (ZCU) 内嵌入多个较小的 DC-DC 转换器。


使用单独的电源分配单元 (PDU) 和 ZCU 时, 电力从电源流过 PDU 和 ZCU, 到达特定区域内的各个负载。 PDU 位于 ZCU之前, 也可以直接为大电流负载供电。 ZCU 则负责为车辆指定区域内的大多数负载分配电力。 下面的框图直观地呈现了该电力流及不同的实现方案。


目前市场上主要有以下两种方法:


  ●  一体式 PDU 和 ZCU:将 PDU 和 ZCU 功能集成在单个模块中。

  ●  分离式 PDU 和 ZCU:使用独立的 PDU 和 ZCU 单元。


9.png


从刀片式保险丝转向受保护半导体开关


长期以来,汽车保险丝一直是保护电路和下游负载免受过电流影响的标准方案,以免过电流引起火灾。传统刀片式保险丝的工作原理简单而关键:其中包含一个经过校准的灯丝,特定时间内 (I2t) 若电流过大,灯丝会熔化,从而使电路开路并中断电流。所选择的灯丝材料及其横截面积决定了保险丝的额定电流。


随着区域控制架构的采用, 整车厂商和一级供应商越来越多地用受保护的半导体开关来取代刀片式保险丝, 大大提高了功能安全性。 不同于传统保险丝(熔断后必须更换) , 受保护的半导体开关能够复位,发生跳闸事件后无需更换, 因此更加先进。 安森美(onsemi)提供三种类型的此类开关:电子保险丝、 SmartFET 和理想二极管控制器。


此类新型器件具有以下应用优势:


  ●  加强负载保护和安全性:发生短路时,会启用智能重试机制和快速瞬态响应,有助于限制电流过冲。灵活性大大提升,有助于提高功能安全性,更好地应对功能故障情况。

  ●  易于集成:此类开关可通过微控制器 (MCU) 轻松集成到更大的系统中,提供配置、诊断和状态报告功能。

  ●  可复位:与传统保险丝不同,此类开关在跳闸后无需更换,可实现灵活的保护方案和阈值调整。

  ●  尺寸紧凑:器件尺寸变小后,更利于集成到区域控制架构中,节省空间并简化车辆线束。


10.png


方案概述


电源分配单元 (PDU) – 框图


电源分配单元 (PDU) 是车辆区域控制架构中的关键组件, 在配电层次结构中承担初始配电的作用。 PDU 连接到车辆的低压(LV) 电池(通常为 12V 或 48V) 或者 HV-LV DC-DC 转换器的输出端, 由转换器将高压 (HV) 电池的电压降低。


PDU 可将电力智能分配至车内的各个区域, 确保高效可靠的电源管理。 PDU 可直接为大电流负载供电, 也可将电力分配给多个区域控制器 (ZCU)。 ZCU 则在各自区域内进一步管理配电, 从而大大减轻了线束的重量和复杂性。 目前有多种方案可供选择, 能够满足不同汽车制造商及其车型的特定要求。 下面的框图简要展示了 PDU 的组成结构:


11.png


用于上桥和下桥保护的 SmartFET


下桥 SmartFET - NCV841x“F”系列


安森美提供两种系列的下桥 SmartFET:基础型 NCV840x 和增强型 NCV841x。这两个系列的引脚相互兼容,且采用相同的封装。 NCV841x 改进了 RSC 和短路保护性能,可显著延长器件的使用寿命。 NCV841x SmartFET 采用了温差热关断技术,可有效防止高热瞬变对器件的破坏,确保优异的 RSC 性能。


NCV841x 系列具有非常平坦的温度系数,可在 -40℃ 至 125℃ 的温度范围内保持一致的电流限制。由于基本不受温度影响,因此无需为应对寒冷天气条件下的电流增大而选择更粗的电线。电线尺寸减小有助于降低车辆线束的成本和占用空间。


NCV8411(NCV841x 系列) 的主要特性:


  ●  三端受保护智能分立 FET

  ●  温差热关断和过温保护, 支持自动重启

  ●  过电流、 过压保护, 集成漏极至栅极箝位和 ESD 保护

  ●  通过栅极引脚进行故障监测和指示


12.png

图 1: NCV841x SmartFET 框图,包括自我诊断和保护电路


理想二极管和上桥开关 NMOS 控制器


NCV68261 是一款极性反接保护和理想二极管 NMOS 控制器, 具有可选的上桥开关功能, 损耗和正向电压均低于功率整流二极管和机械功率开关, 可替代后二者。 这款控制器与一个或两个 N 沟道 MOSFET 协同工作, 并根据使能引脚的状态和输入至漏极的差分电压极性, 设置晶体管的开/关状态。 它的作用是调节和保护汽车电池(电源) , 工作电压 VIN 最高可达32 V, 并且可以抵御高达 60 V 抛负载(负载突降) 脉冲。 NCV68261 采用非常小的 WDFNW-6 封装, 能够在很小的空间内实现保护功能。


这款控制器可通过漏极引脚轻松控制, 支持理想二极管工作模式(图 2) 和极性反接保护工作模式(图 3) 。 


13.png

图 2: NCV68261 应用原理图(理想二极管)


14.png

图 3: NCV68261 应用原理图(极性反接保护 + 上桥开关)


评估板 (EVB)


以下两款理想二极管控制器均可使用评估板: NCV68061 和 NCV68261。 用户可利用评估板在各种配置中测试控制器, 可通过评估板上的跳线设置所需的保护模式。 连接的电源电压应在 -18 V 至 45 V 之间, 不得超过器件的最大额定值。 通过附加跳线, 可使用评估板的预设布局或使用外部连接信号来控制器件。


15.png

图 4: NCV68261 评估板


T10 MOSFET 技术: 40V-80V 低压和中压 MOSFET


T10 是安森美继 T6/T8 成功之后推出的最新技术节点。 新的屏蔽栅极沟槽技术提高了能效, 降低了输出电容、 RDS(ON)和栅极电荷 QG, 改善了品质因数。 T10-M 采用特定应用架构, 具有极低的 RDS(ON)和软恢复体二极管, 专门针对电机控制和负载开关进行了优化。 另一方面, T10-S 专为开关应用而设计, 更加注重降低输出电容。 虽然会牺牲少量的RDS(ON), 但整体能效更好, 特别是在较高频率时。


  ●  RDS(ON)和栅极电荷 QG 整体降低, Rsp(RDS(ON)相对于面积)更低

  ●  在 40V 器件中, NVMFWS0D4N04XM 具有很低的RDS(ON), 仅为 0.42mΩ。

  ●  在 80V 器件中, NVBLS0D8N08X 具有很低的RDS(ON), 仅为 0.8mΩ。

  ●  改进的 FOM (RDS x QOSS/QG/QGD) 提高了性能和整体能效。

  ●  业界领先的软恢复体二极管(Qrr、 Trr)降低了振铃、过冲和噪声。


安森美为 12 V、 48 V PDU 和 ZCU 提供多种 LV 和 MV MOSFET。 可通过表 1 所列产品系列进一步了解安森美提供的方案。


有多种器件技术和封装供设计人员选择。 替代设计方案是紧凑的 5.1 x 7.5 mm TCPAK57 顶部散热封装, 可通过封装顶部的裸露漏极进行散热。


PDU 中的电流水平明显高于单个 ZCU 内部的电流水平, 因此可考虑采用 RDS(ON)低于 1.2 mΩ 的分立式 MOSFET 方案。 另一种方案是在 PDU 内部并联多个 MOSFET, 可进一步提升电流承载能力。 在电流消耗较低的 ZCU 内部, 设计人员可以选择具有先进保护功能(如新的 SmartGuard 功能) 的 SmartFET。


16.png

表 1:推荐安森美 MOSFET(适用于 12 V 和 48 V 系统)


17.png

图 5: T10 MOSFET(底部散热)和替代方案TCPAK57(顶部散热)的常规封装


晶圆减薄


对于低压 FET, 衬底电阻可能占RDS(ON)的很大一部分。 因此, 随着技术的进步, 使用较低电阻率的衬底和减薄晶圆变得至关重要。 在 T10 技术中, 安森美成功减小了晶圆厚度, 从而将 40V MOSFET 中衬底对 RDS(ON)的贡献从约 50% 减少到 22%。 更薄的衬底也提高了器件的热性能。


从传统刀片式保险丝到智能半导体开关的升级,不仅是保护机制的革新,更是汽车配电系统智能化与功能安全升级的关键跨越。以安森美为代表的技术方案——涵盖电子保险丝、SmartFET、理想二极管控制器及先进 MOSFET 等产品矩阵,配合 T10 等领先工艺技术,正为电动汽车的区域控制架构提供更高效、更安全、更紧凑的配电解决方案。未来,随着软件定义汽车的深度演进,这些融合智能控制、高可靠性与小型化特性的技术,将加速构建更智能、更安全的下一代汽车电子电气架构。


相关资讯
破局图像传感器选型难题:成像性能、系统兼容与工具支持的协同​

在技术创新的浪潮中,图像传感器的选型是设计与开发各类设备(涵盖专业与家庭安防系统、机器人、条码扫描仪、工厂自动化、设备检测、汽车等)过程中的关键环节。选择最适配的图像传感器需要对众多标准进行复杂的综合评估,每个标准都直接影响最终产品的性能和功能。从光学格式(Optical Format)和动态范围(Dynamic Range),到色彩滤波阵列(CFA)、像素类型、功耗及特性集成,这些考量因素多样且相互交织、错综复杂。

破解时钟难题:5大场景下压控晶振选型黄金法则(附参数对照表)

压控晶振(VCXO)作为频率调控的核心器件,已从基础时钟源升级为智能系统的"频率舵手"。通过变容二极管与石英晶体的精密耦合,实现电压-频率的线性转换,其相位噪声控制突破-160dBc/Hz@1kHz,抖动进入亚纳秒时代(0.15ps)。在5G-A/6G预研、224G光通信及自动驾驶多传感器同步场景中,VCXO正经历微型化(2016封装)、多协议兼容(LVDS/HCSL/CML集成)及温漂补偿算法的三重技术迭代。

核心差异剖析:晶振 vs. 实时时钟芯片(RTC) - 脉冲源与时间管理者的角色划分

在电子设备的精密计时体系中,晶体振荡器与实时时钟芯片如同时间系统的"心脏"与"大脑":晶振通过石英晶体的压电效应产生基础频率脉冲,为系统注入精准的"生命节拍";而实时时钟芯片则承担时序调度中枢的角色,将原始频率转化为可追踪的年月日时分秒,并实现闹钟、断电计时等高级功能。二者协同构建现代电子设备的"时间维度"。

无人机的“眼”与“脑”:解密自主导航与感知核心技术

无人机已不再是简单的飞行器,而是集成了尖端感知与决策能力的空中智能载体。其核心系统——特别是自主导航与感知技术——是实现其在测绘、巡检、农业、物流、安防等多个领域高效、精准作业的关键。本文将深入剖析无人机如何通过这些核心技术“看见”、“思考”并“规划”路径,实现真正意义上的自主飞行能力。

压控晶体振荡器(VCXO)工作原理深度解析:电压如何精确调谐频率

压控晶体振荡器(Voltage-Controlled Crystal Oscillator, VCXO)是一种关键的高精度频率源,其核心特性在于能够通过施加外部控制电压来精细调节其输出频率。其频率控制过程依赖于精密的电路设计和晶体的独特物理特性,主要涉及以下核心原理: