发布时间:2025-06-9 阅读量:1246 来源: 安森美 发布人: wenwei
【导读】随着前沿技术向更高温领域进军,汽车、工业、军事及能源等行业对耐高温集成电路(IC)的需求急剧攀升。 然而,极端高温环境如同无形的枷锁,严重制约着芯片的性能表现、长期可靠性与系统安全边界。要突破这一瓶颈,必须直面高温产生的根源——从环境热负载到器件自身的功耗发热——并进行系统性优化。安森美(onsemi)的 Treo™ 平台正是为此而生,它构建了一个端到端的产品开发生态系统,专为支撑IC在严苛高温下稳定运行而设计,致力于提升器件在极端工况下的鲁棒性、延长使用寿命,同时优化整体方案的性价比。
环境温度
IC 及所有电子设备的一个关键参数是其能够可靠工作的温度范围。具体的工作温度范围是根据其应用和行业来定义的(图 1a)。
图 1. 不同应用的温度范围及温度曲线示例
例如,对于汽车 IC 而言,温度范围取决于电子元件的安装位置。如果位于乘员舱内,温度范围最高可达 85°C。如果位于底盘或发动机舱内,但不直接位于发动机上,则温度范围最高可达 125°C。靠近或直接位于发动机或变速箱附近,温度范围可达 150°C 或 160°C。在靠近刹车或液压系统的底盘区域,温度最高可达 175℃。这些对高温的要求适用于内燃机汽车,同时也适用于混动和全电动汽车。
当汽车发动机运行时,主动冷却系统会有效控制温度。然而,在最极端的情况下,如车辆行驶后停放在酷热环境中,此时主动冷却系统停止工作,发动机及其它部件的热量逐渐扩散,导致电子设备温度上升。即便如此,当汽车再次启动时,所有系统仍需在温度升高的条件下保持正常工作。
对于适中的温度条件,可以定义 IC 在静态工作温度下的预期使用寿命。例如,在 125°C 的条件下可以连续工作 10 年。然而,对于像 175°C 这样的高温,使用 bulk CMOS 工艺实际上是不能实现的。通常,IC 不需要在其整个生命周期内都以最高温度运行。在汽车行业,常采用热曲线图来替代固定的静态温度规范,将整个使用寿命划分为不同的工作模式和温度区间(段),只有一小部分时间需要在极高温度下工作(图 1b)。
将电子元件布置在更靠近应用的高温区域,通过减少噪音和干扰可以提高传感器的精度和分辨率。对于大功率应用,尽量减少大电流开关回路可减少干扰。采用局部闭环控制系统可减轻重量并提高性能。然而,缩小模块尺寸会因功率密度提高和散热问题而增加电子元件的温度。
结温
IC 工作时会有功耗,导致 IC 内部的实际半导体结温高于环境温度。温度的升高取决于 IC 内部耗散的功率以及裸片与环境之间的热阻。这种热阻取决于封装类型、PCB、散热片等(见图 2)。
图 2. 结温升高
对于功率开关、功率驱动器、DC-DC 转换器、具有高压降的线性稳压器(例如,在使用 DC-DC 转换器不经济的情况下,用于汽车电池驱动模块)或传感器执行器来说,裸片高功耗是不可避免的。
热阻取决于封装类型和热管理方式(图 3)。对于常用的小型封装,结到外部环境的热阻大约为 50-90K/W(SOIC 封装),以及大约 30-60K/W(QFP 封装)。在某些应用中,结至环境的热阻可达每瓦数百开尔文。
图3. 不同封装类型IC散热示例
结温在 IC 的整个裸片上并不是均匀一致的。可能存在如功率驱动器等高功耗区。具有高功率驱动器的 IC 裸片温度图示例见图 4。
图 4. IC热分布图示例
综上所述,IC内部的热分布绝非均匀,高功耗区域(如功率驱动器)会形成显著的热点,成为影响整体可靠性的关键瓶颈(如图4所示)。因此,应对高温挑战不仅关乎材料选型与工艺设计,更需要系统级的散热优化和精准的热管理策略。安森美Treo™平台集成了先进的芯片设计、封装技术与热建模能力,为开发者提供了一套完整的工具链和已验证的解决方案,确保您的产品即使在最严苛的温度曲线(如图1b所示)与空间热梯度(如图4所示)下,也能实现预期的性能、寿命与安全性目标。
在技术创新的浪潮中,图像传感器的选型是设计与开发各类设备(涵盖专业与家庭安防系统、机器人、条码扫描仪、工厂自动化、设备检测、汽车等)过程中的关键环节。选择最适配的图像传感器需要对众多标准进行复杂的综合评估,每个标准都直接影响最终产品的性能和功能。从光学格式(Optical Format)和动态范围(Dynamic Range),到色彩滤波阵列(CFA)、像素类型、功耗及特性集成,这些考量因素多样且相互交织、错综复杂。
压控晶振(VCXO)作为频率调控的核心器件,已从基础时钟源升级为智能系统的"频率舵手"。通过变容二极管与石英晶体的精密耦合,实现电压-频率的线性转换,其相位噪声控制突破-160dBc/Hz@1kHz,抖动进入亚纳秒时代(0.15ps)。在5G-A/6G预研、224G光通信及自动驾驶多传感器同步场景中,VCXO正经历微型化(2016封装)、多协议兼容(LVDS/HCSL/CML集成)及温漂补偿算法的三重技术迭代。
在电子设备的精密计时体系中,晶体振荡器与实时时钟芯片如同时间系统的"心脏"与"大脑":晶振通过石英晶体的压电效应产生基础频率脉冲,为系统注入精准的"生命节拍";而实时时钟芯片则承担时序调度中枢的角色,将原始频率转化为可追踪的年月日时分秒,并实现闹钟、断电计时等高级功能。二者协同构建现代电子设备的"时间维度"。
无人机已不再是简单的飞行器,而是集成了尖端感知与决策能力的空中智能载体。其核心系统——特别是自主导航与感知技术——是实现其在测绘、巡检、农业、物流、安防等多个领域高效、精准作业的关键。本文将深入剖析无人机如何通过这些核心技术“看见”、“思考”并“规划”路径,实现真正意义上的自主飞行能力。
压控晶体振荡器(Voltage-Controlled Crystal Oscillator, VCXO)是一种关键的高精度频率源,其核心特性在于能够通过施加外部控制电压来精细调节其输出频率。其频率控制过程依赖于精密的电路设计和晶体的独特物理特性,主要涉及以下核心原理: