高效电池充电系统设计:拓扑选择与安森美功率半导体解决方案​

发布时间:2025-05-28 阅读量:2254 来源: 安森美 发布人: wenwei

【导读】随着电池技术的飞速发展,现代设备对充电效率、功率密度和可靠性的需求日益增长。从电动工具到工业搬运设备,再到电动汽车,快速、高效的充电系统已成为提升用户体验和生产力不可或缺的关键。然而,设计高性能的电池充电解决方案需要综合考虑功率拓扑、半导体器件选择以及系统优化。本文将探讨电池充电系统的设计标准,分析主流拓扑结构,并介绍安森美(onsemi)先进的功率半导体技术如何助力实现更高效、更紧凑的充电方案。


24.png


电池充电系统


电池充电系统适用于多种类型的化学电池,包括铅酸电池、镍氢电池和锂离子电池。目前,大多数电池供电设备采用 12V 至 120V 的锂离子或磷酸锂电池。电池充电器必须根据应用的要求和工作环境进行设计。对于手持式电动工具而言,电池充电器必须紧凑轻便,并且能够在无需强制散热的情况下运行。此类小型高效充电器需要高能量密度,这要求充电器必须具备低功率损耗和更小的散热器,而快速充电则需要高频充电器。


在工业应用中,充电器必须坚固耐用,能够承受恶劣的室内外环境,并且可能需要由 120-277 V 交流电源,甚至 480V 交流电源来供电。


因此,设计人员必须为其最终应用谨慎选择最佳拓扑,并优化器件选择,以满足性价比要求。


电池充电拓扑


图 1 显示了典型电池充电系统的框图。在前端,来自市电的输入电压经滤波后,通过功率因数校正 (PFC) 电路转换为直流电压。该系统的第二级由 DC-DC 转换和恒压/恒流控制功能组成,用以提供所需的充电输出。


25.png

图 1:典型电池充电系统框图


许多设计利用微控制器对充电器进行编程,以提供不同的电池电压和电流能力。


为应用选择最佳拓扑


接下来,我们将分析几种电路拓扑,并讨论它们在不同电池供电应用中的适用性。


1.PFC 拓扑


连续导通模式升压拓扑(图 2)是最简单且成本最低的 PFC 拓扑,它由输入 EMI 滤波器、桥式整流器、升压电感器、升压 FET 和升压二极管组成。


26.png

图 2:连续导通模式升压拓扑


使用固定频率平均模式控制器,例如安森美的 NCP1654 和 NCP1655 CCM PFC 控制器,可以实现更高的 PFC 和更低的总谐波失真 (THD) 水平。这些器件极大地简化了 PFC 的实现,有效减少了外部元件的数量,同时集成了输入功率失控箝位电路等多种安全特性。


对于更高功率的应用,安森美的 FAN9672 和 FAN9673 PFC 控制器是不错的选择。碳化硅 (SiC) 在充电应用中具有显著优势,包括低开关损耗和高工作频率。因此,在 PFC 设计中建议使用 SiC 升压二极管。在 2KW 至 6.6KW 的高功率应用中,输入桥的损耗明显更高,通过用 Si MOSFET 或 SiC MOSFET 等有源开关代替二极管,可以降低这些损耗。


其他常见的拓扑包括半无桥 PFC 和图腾柱 PFC (TPFC),它们消除了桥式整流器,并且损耗更低。TPFC(图 3)由 EMI 滤波器、升压电感器、高频半桥、低频半桥、双通道栅极驱动器和固定频率 TPFC 控制器组成。


27.png

图 3:图腾柱 PFC 拓扑


TPFC 电路的高频桥臂要求功率开关中集成具有低反向恢复时间的二极管,SiC 和 GaN 功率开关均适合此级。安森美建议,对于 600W 至 1.2KW 的功率水平,使用集成栅极驱动器的 GaN,而对于 1.5KW 至 6.6KW 的应用,则使用 SiC FET。集成 SiC 二极管的 IGBT 可用于 20-40KHz 的较高频率应用。电路的低频桥臂可以使用低 RDS(on) 超级结 MOSFET 或低 VCE(SAT) IGBT。对于更高功率(4.0 KW 至 6.6KW)的应用,设计人员应考虑采用交错式 TPFC 拓扑。


安森美 650V EliteSiC MOSFET 为 TPFC 设计的高频桥臂提供了一系列选择。对于 3.0kW 应用,可以考虑使用 NTH4L032N65M3S。对于高达 6.6kW 的应用,NTH4L015N65M2 和 NTH4L023N065M3S 是不错的选择。对于 TPFC 电路的低频桥臂,NTHL017N60S5 器件是一个合适的选择。


2.隔离式 DC-DC 转换器


对于隔离式 DC-DC 转换,根据应用的功率水平,可以采用多种不同的拓扑。


带有次级侧同步桥式整流器的半桥 LLC 拓扑(图 4)非常适合 600W 至 3.0KW 的充电器应用。根据功率水平的不同,可以使用 GAN 功率开关(NCP58921,600W 至 1.0KW)或 SiC MOSFET(2KW 和 3.0KW)。对于更高功率水平(4.0KW 至 6.6KW)的应用,设计人员应考虑采用全桥 LLC(图 5)或交错式 LLC 拓扑。


28.png

图 4:集成 Lr 的半桥 LLC


设计人员可以选择将 NTBL032N65M3S 或 NTBL023N065M3S EliteSiC MOSFET 用于初级侧半桥,而对于次级侧同步整流器,可以选用 80-50V PowerTrench® MOSFET(例如 NTBL0D8N08X 和 NTBL4D0N15MC)。


29.png

图 5:带有次级电压倍增电路的全桥 LLC 拓扑


乘坐式割草机、叉车和电动自行车等应用可能需要功率水平介于 6.6KW 至 11.0KW 之间的双有源桥 (DAB) 充电解决方案。双有源桥拓扑(图 6)适用于 6.0KW 至 30.0KW 的应用,并且可以将多个 6.0KW 充电器并联使用来支持 12.0KW 至 30KW 的应用。


30.png

图 6:双有源桥技术


根据应用的具体要求,设计人员可以采用不同形式的双有源桥拓扑。对于采用 120-347V 单相交流输入电压的工业充电器,可以使用单级双有源桥拓扑(图 7),而对于功率水平在 4.0KW 至 11.0KW 的应用,则需要采用三相双有源桥,其初级拓扑中使用双向交流开关,次级拓扑中使用全桥。


31.png

图 7:单级双有源桥转换器


安森美的产品组合中包括适用于双向开关应用的 650-750V Elite SiC MOSFET 和 iGaN HEMT 器件。NTBL032N65M3S 和 NTBL023N65M3S EliteSiC MOSFET 建议用于初级双向开关,iGaN 技术同样也适用。


优化拓扑和器件选择


电池充电系统的性能直接影响设备的可用性和用户体验,因此设计人员必须根据应用需求选择合适的拓扑和优化器件组合。安森美凭借其丰富的功率半导体产品线,包括硅基MOSFET、IGBT以及先进的SiC和GaN器件,为不同功率等级的充电系统提供了高性能、高可靠性的解决方案。无论是紧凑型手持工具充电器,还是高功率工业充电站,安森美的技术都能帮助工程师突破设计瓶颈,实现更高效、更智能的能源管理,推动电池供电设备的未来发展。


相关资讯
破解时钟难题:5大场景下压控晶振选型黄金法则(附参数对照表)

压控晶振(VCXO)作为频率调控的核心器件,已从基础时钟源升级为智能系统的"频率舵手"。通过变容二极管与石英晶体的精密耦合,实现电压-频率的线性转换,其相位噪声控制突破-160dBc/Hz@1kHz,抖动进入亚纳秒时代(0.15ps)。在5G-A/6G预研、224G光通信及自动驾驶多传感器同步场景中,VCXO正经历微型化(2016封装)、多协议兼容(LVDS/HCSL/CML集成)及温漂补偿算法的三重技术迭代。

核心差异剖析:晶振 vs. 实时时钟芯片(RTC) - 脉冲源与时间管理者的角色划分

在电子设备的精密计时体系中,晶体振荡器与实时时钟芯片如同时间系统的"心脏"与"大脑":晶振通过石英晶体的压电效应产生基础频率脉冲,为系统注入精准的"生命节拍";而实时时钟芯片则承担时序调度中枢的角色,将原始频率转化为可追踪的年月日时分秒,并实现闹钟、断电计时等高级功能。二者协同构建现代电子设备的"时间维度"。

无人机的“眼”与“脑”:解密自主导航与感知核心技术

无人机已不再是简单的飞行器,而是集成了尖端感知与决策能力的空中智能载体。其核心系统——特别是自主导航与感知技术——是实现其在测绘、巡检、农业、物流、安防等多个领域高效、精准作业的关键。本文将深入剖析无人机如何通过这些核心技术“看见”、“思考”并“规划”路径,实现真正意义上的自主飞行能力。

压控晶体振荡器(VCXO)工作原理深度解析:电压如何精确调谐频率

压控晶体振荡器(Voltage-Controlled Crystal Oscillator, VCXO)是一种关键的高精度频率源,其核心特性在于能够通过施加外部控制电压来精细调节其输出频率。其频率控制过程依赖于精密的电路设计和晶体的独特物理特性,主要涉及以下核心原理:

从机械臂到数字脉动:电感式位置传感器驱动线控技术重塑汽车电子架构

百年汽车工业的机械传动传统正遭遇颠覆性变革。随着电动化与智能化浪潮席卷而来,传统的机械连接在精度、响应速度和集成度上面临瓶颈。线控技术(Drive-By-Wire)应运而生,它通过精密的传感器(如电感式位置传感器)将驾驶者的物理操作——如踩踏制动踏板——转化为数字指令,彻底剥离了机械传导的束缚。这种“电传操纵”正深度重构着汽车的电子电气架构,而电感式位置传感器凭借其高精度、高可靠性和独特的非接触特性,成为了线控系统落地实施的标杆型解决方案。