晶振在PCB板上如何布局?

发布时间:2025-05-16 阅读量:2237 来源: 我爱方案网 作者: 扬兴晶振

【导读】在很多电路中,系统晶振时钟频率很高,干扰谐波出来的能量也强,谐波除了会从输入与输出两条线导出来外,也会从空间辐射出来,这也导致若PCB中对晶振的布局不够合理,会很容易造成很强的杂散辐射问题,并且一旦产生,很难再通过其他方法来解决,所以在PCB板布局时对晶振和CLK信号线布局非常重要。


晶振的等效电路


事实上,晶振的作用就像一个串联的RLC电路。


晶振的等效电路显示了一个串联的RLC电路,表示晶振的机械振动,与一个电容并联表示与晶振的电气连接,而晶振振荡器便朝着串联谐振运行工作。


21.png


其中,R是ESR等效串联电阻,L和C分别是等效电感和电容,Cp为寄生电容。


晶振在PCB板的设计布局


作为数字电路中的心脏,晶振影响着整个系统的稳定性,系统晶振的选择,决定了数字电路的成败。


由于晶振内部存在石英晶体,受到外部撞击等情况造成晶体断裂,很容易造成晶振不起振,所以通常在电路设计时,要考虑晶振的可靠安装,其位置尽量不要靠近板边、设备外壳等地方。PCB对晶振布局时通常注意以下几点:


①晶振不能距离板边太近、晶振的外壳必须接地,否则易导致晶振辐射杂讯。


在板卡设计时尤其需要注意这点。外壳接地可以避免晶振向外辐射,同时可以屏蔽外来信号对晶振的干扰。如果一定要布置在PCB边缘,可以在晶振印制线边上再布一根GND线,同时在包地线上间隔一段距离就打过孔,将晶振包围起来。


22.png


②晶振下方不能布信号线,否则易导致信号线耦合晶振谐波杂讯。


保证完全铺地,同时在晶振的300mil范围内不要布线,这样可以防止晶振干扰其他布线、元器件和层的性能。


③若滤波器件放在晶振下方,且滤波电容与匹配电阻未按照信号流向排布,会使滤波器的滤波效果变差。


耦合电容应尽量靠近晶振的电源引脚,按电源流入方向,依容值从大到小顺序摆放。


④时钟信号的走线应尽量简短,线宽大一些,在布线长度和远离发热源上寻找平衡。


以下图布局为例,晶振的布局方式会相对更优:


①晶振的滤波电容与匹配电路靠近MCU芯片位置,远离板边。

②晶振的滤波电容与匹配电阻按照信号流向排布,靠近晶振摆放整齐紧凑。

③晶振靠近芯片处摆放,到芯片的走线尽量短而直。


在电路系统中,高速时钟信号线优先级最高。时钟线是一个敏感信号,频率越高,要求走线尽量简短,以保证信号的失真度达到最小。



相关资讯
920nm问世+低红曝优选:IR:6技术精准匹配多元红外应用场景

IR:6红外芯片通过实质性的技术创新,显著提升了在面部识别、智能传感器和节能系统等应用中的关键性能(亮度、效率和图像质量)。它在人眼不可见的红外领域展现出卓越表现,特别是在安防领域以更高亮度、更低功耗和更优画质设定了新的距离覆盖和可靠性标准。

工业电动化浪潮:充电器设计的效率与尺寸挑战

工业设备加速迈向电动化,对稳健、高效、适应性强的电池充电器需求激增。无论是手持工具还是重型机械,充电器必须应对严苛环境和全球通用电压输入(120-480 Vac),并优先满足小型化、轻量化及被动散热的设计要求。在这一关键任务中,功率因数校正(PFC)级的拓扑选择至关重要,它直接影响着系统效率、尺寸和成本。本文将剖析现代工业充电设计的核心挑战,重点对比传统升压 PFC 与日益流行的图腾柱 PFC 拓扑方案,并探讨碳化硅(SiC)MOSFET 如何颠覆性地赋能高效率解决方案,为工程师提供清晰的设计指导。

高温应用驱动下的集成电路耐热性挑战

技术的迅猛发展持续推动着商业、工业及汽车等领域对耐高温集成电路(IC)的迫切需求。然而,高温环境会显著劣化集成电路的性能、可靠性与使用寿命,形成亟待解决的技术瓶颈。本文旨在系统分析高温对IC的物理影响,深入剖析高结温带来的核心挑战,并探讨针对高功率应用的有效设计应对策略。

SiC市场技术演进的关键突破:共源共栅(Cascode)结构解析

安森美(onsemi)推出的碳化硅共源共栅场效应晶体管(Cascode FET),通过创新架构融合SiC JFET与低压硅MOSFET,成功解决了SiC JFET常开特性的应用瓶颈。该设计兼具SiC材料的高效优势与硅器件的易控特性,在硬开关与软开关场景中展现显著性能提升。本文将深入剖析其结构原理及核心优势。

差分晶振和无源晶振有什么区别

在现代电子系统的设计中,晶振作为提供稳定时钟信号的“心脏”,其性能直接影响着整个系统的可靠性与效率。面对差分晶振与无源晶振(晶体谐振器) 这两类核心时钟源,工程师们往往需要在性能、成本、设计复杂度与抗干扰能力之间寻求微妙的平衡。这两者绝非简单的引脚差异,而代表了截然不同的工作原理与设计哲学: