发布时间:2025-04-3 阅读量:1510 来源: ADI 发布人: wenwei
【导读】随着工业4.0的推进,无线传感器在智能制造中的需求激增,其核心挑战在于如何在复杂射频环境中实现低功耗、高可靠性与安全性。本文聚焦低功耗蓝牙®(BLE)、SmartMesh(基于IEEE 802.15.4e的6LoWPAN)及Thread/Zigbee(基于IEEE 802.15.4的6LoWPAN)三大无线标准,从功耗、可靠性、安全性和总拥有成本等维度展开系统性评估。研究表明,SmartMesh凭借时间同步信道跳频(TSCH)技术,在恶劣工业场景中展现出99.999996%的超高可靠性及极低能耗;而BLE则在大数据量传输场景中表现卓越。此外,融合边缘人工智能(AI)的新型传感器设计进一步优化了能效,为工业无线传感提供了创新解决方案。
简介
2022年至2024年间,电机驱动系统智能传感器市场的销售额预计将增长一倍以上(达到9.06亿美元)1。在智能传感器领域,无线和便携式设备预计将成为主要的增长动力。使用无线环境传感器(温度、振动)监控工业机器有一个明确的目标:检测受监控设备是否偏离健康运行状态。
对于工业无线传感器应用,低功耗、可靠性和安全性始终是最重要的要求。其他要求包括低总拥有成本(尽可能少的网关和维护工作)、短距离通信,以及支持在包含大量金属障碍物的工厂环境中形成网格网络的协议(网格网络有助于减轻可能的信号路径屏蔽和反射)。
工业应用和无线标准要求
图1概要展示了几种无线标准,表1根据关键工业要求对选定的无线标准进行了对比评估。显然,BLE和SmartMesh(基于IEEE 802.15.4e的6LoWPAN)在低功耗、可靠性和安全性方面为工业应用提供了出色综合性能。Thread和Zigbee功耗低、实现了安全网格,但可靠性相对较低。
图1.无线标准概览
表1.无线标准与工业应用需求的匹配
表2提供了有关Zigbee/Thread、SmartMesh和BLE网格标准的更多细节。SmartMesh包含时间同步信道跳频(TSCH)协议,根据该协议,网络中的所有节点都同步,通信由预定的时间表进行协调。时间同步消耗的功耗低,并且信道跳频可靠性高。BLE标准也包含信道跳频,但与SmartMesh相比有一些限制,例如线路供电路由节点(会增加系统成本和功耗),而且不支持TSCH。如前所述,Zigbee/Thread的可靠性相对较低,与BLE相比没有太多优势。
表2.工业应用的关键无线标准和性能
ADI无线状态监控传感器
表3概述了ADI公司的Voyager 3无线振动监测平台和下一代无线状态监控传感器。Voyager 3采用SmartMesh模块(LTP5901-IPC)。支持AI的振动传感器(仍在开发中)采用BLE微控制器(MAX32666)。两种传感器均包含温度和电池健康状态(SOH)传感器。Voyager 3和AI版本传感器使用ADI MEMS加速度计(ADXL356、ADXL359)来测量工业设备的振动幅度和频率。通过FFT频谱可以识别出振动幅度和频率的增加,这可能是电机不平衡、未对准和轴承损坏等故障的征兆。
表3.ADI无线工业传感器原型
图2概述了Voyager 3和支持AI的振动传感器典型操作。与许多工业传感器一样,占空比为1%;大多数时候,传感器处于低功耗模式。传感器定期唤醒以批量收集数据(或在发生高振动幅度冲击事件时唤醒),或者向用户发送状态更新。通常通过一个标志通知用户,受监控的机器运行状况良好,并且用户有机会收集更多数据。
低功耗
表3中显示的传感器以1%的占空比运行,其中Voyager 3的最大有效载荷为90字节,AI版本的最大有效载荷为510字节。图4(改编自Shahzad和Oelmann3)显示,对于500字节到1000字节的有效载荷,BLE消耗的能量少于Zigbee和Wi-Fi。因此,BLE非常适合AI使用场景。SmartMesh的功耗非常低,在90字节或有效载荷更少的情况下(如Voyager 3传感器中使用的)尤为如此。网站上提供的SmartMesh功耗和性能估算工具可用于估算SmartMesh能耗。经实验验证,SmartMesh功耗估算工具的精度为87%至99%,具体取决于传感器是路由节点还是叶节点。
图2.工业无线传感器的典型操作
安全性
SmartMesh IP网络采用多重安全层级,这些层级可以归纳为机密性、完整性和真实性。图3总结了SmartMesh安全性。即使网络中存在多个网格节点,AES-128位端到端加密也能确保机密性。传输的数据受消息认证码(消息完整性检查或MIC)的保护,以确保数据没有被篡改。这可以防止中间人(MITM)攻击,如图3所示。SmartMesh支持多级设备身份验证,能够防止未经授权的传感器添加到系统中。
图3.BLE和SmartMesh网络的安全实现方案
采用BLE标准4.0和4.1版本的设备存在安全漏洞,但4.2及更高版本的安全性有所增强(如图3所示)。ADI公司的MAX32666符合BLE标准5.0。此版本引入了P-256椭圆曲线Diffie-Hellman密钥交换用于配对。在该协议中,两个设备的公钥用于创建两个设备之间的共享密钥,即长期密钥(LTK)。该共享密钥用于身份验证和生成密钥,以将所有通信加密,防止MITM攻击。
图4.数据传输(无线电收发器PHY)和能耗(改编自Shahzad和Oelmann)3
除了无线电发射功耗之外,还必须考虑系统总功耗预算和总拥有成本。如表2所示,BLE和Zigbee都使用单个网关运行。然而,两者还需要线路电源来为路由节点供电。这会增加功耗预算和系统总拥有成本。相比之下,SmartMesh路由节点平均仅需要50 µA的电流,并且整个网络可以使用单个网关运行。SmartMesh显然是一种更节能的实现方案。
可靠性和稳健性
前面提到过,SmartMesh采用TSCH,它有以下特点:
● 网络中的所有节点都同步。
● 通信根据通信时间表进行。
● 时间同步带来低功耗。
● 信道跳频带来高可靠性。
● 通信的计划性带来高度确定性。
全网络同步精度小于15µs。如此高水平的同步可大大降低功耗。平均电流消耗为50 µA,99%以上的时间电流消耗为1.4 µA。
表4列出了一些关键应用挑战,并说明了SmartMesh和BLE网格如何应对这些挑战。
表4.工业应用中无线网络面临的关键挑战以及BLE/SmartMesh性能
SmartMesh在拥有大量节点的密集网络中表现更佳。BLE和SmartMesh在动态工业环境中均表现良好。
ADI公司的晶圆厂针对SmartMesh的可靠性进行了测试5,该工厂的射频环境较为恶劣,满是金属和混凝土。三十二个无线传感器节点分布在一个Mesh网络中,最远的传感器节点到网关有四跳。每个传感器节点每30秒发送四个数据包。在83天的时间段里,传感器发送了26,137,382个数据包,接收了26,137,381个数据包,可靠性为99.999996%。
边缘人工智能
下一代无线传感器包括搭载AI硬件加速器的MAX78000微控制器。该AI硬件加速器大幅减少了数据移动,并利用并行性优化了能源使用和吞吐速率。
目前市售无线工业传感器通常以非常低的占空比运行。用户设置传感器休眠时长,此后传感器唤醒并测量温度和振动,然后通过无线电将数据传回用户的数据聚合器。市售传感器通常声称电池寿命为5年,此寿命基于每24小时捕获一次数据,或每4小时捕获一次数据。下一代传感器将以类似方式运行,但利用边缘AI异常检测来限制无线电的使用。当传感器唤醒并测量数据时,只有检测到振动异常时才会将数据传回用户。这样,电池寿命可以延长至少20%。
对于AI模型训练,传感器收集机器的健康数据,然后通过无线方式发送给用户进行AI模型开发。使用MAX78000工具将AI模型合成为C代码,然后传回无线传感器并置于内存中。部署代码后,无线传感器按照预定义的时间间隔或在发生高-g冲击事件时唤醒。收集数据后生成FFT。通过FFT,MAX78000基于该数据做出推断。如果没有检测到异常,则传感器返回休眠状态。如果检测到异常,则会通知用户。然后,用户可以请求所测得异常的FFT或原始时域数据,这些数据可用于故障分类。
结论
综合评估表明,SmartMesh凭借其TSCH协议和低功耗路由节点特性,成为高干扰工业环境的首选方案;而BLE在中等数据吞吐场景中更具能效优势,尤其适配边缘AI赋能的传感器节点。随着AI硬件加速器的集成,无线传感器的自主决策能力显著提升,电池寿命可延长20%以上。未来,工业无线网络的设计需权衡可靠性、功耗与部署成本,而SmartMesh与BLE的差异化优势为不同应用场景提供了灵活选择。技术的持续迭代与边缘智能的深度融合,将推动工业无线传感向更高效、更鲁棒的方向演进。
推荐阅读:
恩智浦NXP i.MX6ULL通用标准智能网关:低功耗高性能的工业物联网核心引擎
金升阳推出医疗级高可靠性DC/DC电源模块,为医疗设备打造“无忧电源”解决方案
Abracon AVR系列组合式电感:驱动数据中心与AI服务器高效能电压调节的新引擎
Littelfuse推出百万次寿命轻触开关PTS845系列:紧凑设计赋能高端电子设备升级
创新光源引领未来:ROHM推出小型近红外LED实现业界超高光辐射强度
当全球每年因交通事故消失的人口相当于一座中型城市时(超110万人死亡,2000-5000万人受伤),科技正在成为人类对抗道路死神的最强盾牌。在这场生死时速的较量中,先进驾驶辅助系统(ADAS)如同数字化的守护天使,通过车规级传感器与AI算法的精密协作,正悄然改写交通安全的历史剧本。而这一切革命性变革的核心密码,就藏在那些比人类视觉敏锐百倍的"电子之眼"中。
在高精度雷达和导航应用领域中,时钟稳定性和精准定位是两大关键因素。由于雷达系统需要精确测量目标的距离、速度和方位,而导航系统则要求高精度地确定位置和规划路径,因此这些应用都对时钟信号的精度提出了极高要求。
当指尖划过屏幕成为数字时代的基础语言,触控技术正在书写人机交互的新篇章。Canalys最新数据显示,全球PC市场在2024年实现3.9%的企稳增长后,2025年将迎来AI PC换机潮与Windows 10停服的双重催化,预计触控设备市场规模将突破百亿美元。在这场交互革命中,触控板已从外围配件进化为生产力核心组件——更精准的轨迹捕捉、更具实感的力度反馈、更智慧的生物识别,正在重新定义"指尖生产力"的边界。兆易创新凭借在电容触控领域十余年的技术积淀,以GSM3765/3766芯片组为支点,撬动这场触觉体验的全面升级。
在工业4.0向工业5.0跨越的进程中,自主移动机器人(AMR)正从“效率工具”蜕变为“智慧伙伴”。随着制造业对“以人为本”和“可持续性”的追求升级,AMR的设计核心已从单纯的自动化转向安全性与人机协作的深度融合。然而,高速移动的机械臂、复杂环境中的动态障碍物,以及突发外力冲击,仍对工人安全和设备稳定性构成挑战。如何在提升生产力的同时,让AMR像人类一样“感知风险、快速决策”?安森美(onsemi)通过传感、运动控制与智能照明的系统性创新,为这一难题提供了前瞻性答案。
在万物互联的时代,传感器如同数字世界的“末梢神经”,悄然推动着智能生活的每一次革新。作为MEMS气压传感器领域的革新力量,兆易创新正以颠覆性技术突破行业边界——从实现水下100米精准测量的防水型GDY1122,到功耗低至微安级的节能标杆GDY1121,其产品矩阵以“高精度、高集成、高灵敏度”的硬核实力,攻克复杂环境下的感知难题。在慕尼黑上海电子展的聚光灯下,这家中国芯片企业不仅展示了10ATM防水等级的尖端方案,更通过“3高1低1优”战略,将MEMS传感器推向智能穿戴、工业监测、应急救援等领域的核心舞台。