差分晶振—LVPECL到LVDS的连接

发布时间:2025-03-18 阅读量:2221 来源: 我爱方案网 作者:

【导读】随着通讯速度的提升,出现了很多差分传输接口,以提升性能,降低电源功耗和成本。早期的技术,诸如emitter-coupled logic(ECL),使用不变的负电源供电,在当时用以提升噪声抑制。随着正电压供电技术发展,诸如TTL和CMOS技术,原先的技术优点开始消失,因为他们需要一些-5.2V或-4.5V的电平。


随着通讯速度的提升,出现了很多差分传输接口,以提升性能,降低电源功耗和成本。早期的技术,诸如emitter-coupled logic(ECL),使用不变的负电源供电,在当时用以提升噪声抑制。随着正电压供电技术发展,诸如TTL和CMOS技术,原先的技术优点开始消失,因为他们需要一些-5.2V或-4.5V的电平。

 

在这种背景下,ECL转变为positive/pseduo emitter-coupled logic (PECL),简化了板级布线,摒弃了负电平供电。PECL要求提供800mV的电压摆幅,并且使用5V对地的电压。LVPECL类似于PECL也就是3.3V供电,其在电源功耗上有着优点。

 

当越来越多的设计采用以CMOS为基础的技术,新的高速驱动电路开始不断涌现,诸如current mode logic(CML),votage mode logic(VML),low-voltage differential signaling(LVDS)。这些不同的接口要求不同的电压摆幅,在一个系统中他们之间的连接也需要不同的电路。

 

Ø 转换原因‌

1、‌电平特性差异‌

a)LVPECL电平的差分摆幅较大(典型值约800mV),共模电压较高(约1.3V-1.9V),需外部端接电阻匹配;而LVDS差分摆幅较小(350mV),共模电压较低(约1.2V),且LVDS接收端内置端接电阻‌。

b)直接连接可能导致LVDS接收端共模电压超出范围或信号幅度不足‌。

 

2、‌应用场景需求‌

a)LVPECL常用于高速时钟或数据传输场景(如FPGA输出),而LVDS因低功耗特性更适合长距离或低功耗设计‌‌。

b)不同器件间接口不兼容时需电平转换(如FPGA输出LVPECL,但接收端仅支持LVDS)‌

 

Ø 转换方式

1、直流耦合

LVPECL到LVDS 的直流耦合结构需要一个电阻网络,如图1中所示,设计该网络时有这样几点必须考虑:首先,我们知道当负载是50Ω接到Vcc-2V 时,LVPECL 的输出性能是最优的,因此我们考虑该电阻网络应该与最优负载等效;然后我们还要考虑该电阻网络引入的衰减不应太大,LVPECL 输出信号经衰减后仍能落在LVDS 的有效输入范围内。注意LVDS 的输入差分阻抗为100Ω,或者每个单端到虚拟地为50Ω,该阻抗不提供直流通路,这里意味着LVDS输入交流阻抗与直流阻抗不等.经计算,电阻值为:R1=182Ω,R2=48Ω,R3=48Ω。电阻靠近接收侧放置。


 差分晶振—LVPECL到LVDS的连接

        (a)等效电路                  (b)LVPECL到LVDS的连接

图1.1 LVPECL到LVDS的直流耦合结构

2、交流耦合

LVPECL 到LVDS 的交流耦合结构如图2 所示,LVPECL 的输出端到地需加直流偏置电阻(142Ω到200Ω),同时信号通道上一定要串接50Ω电阻,以提供一定衰减。LVDS 的输入端到地需加5KΩ电阻,以提供近似0.86V 的共模电压。


 差分晶振—LVPECL到LVDS的连接   

图1.2LVPECL到LVDS的交流耦合结构


在信号转换方面,LVPECL到LVDS的转换则需要考虑衰减电阻和交流耦合电容的放置,以及LVDS接收器的重新偏置。相反,LVDS到LVPECL的转换也需要适当的电路设计和元件选择。

 

LVDS和LVPECL各有其特点和应用场景。LVDS适用于板内信号传输和高速变化信号的传输,而LVPECL则适用于背板传输和长线缆传输等需要强驱动能力和高传输速度的应用。不过,虽然LVPECL到LVDS的转换可以通过电路的设计可以实现,这边建议客户尽量选用相同类型波形的差分传输接口,毕竟电路转换会有很多其他不确定的影响。

 

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


我爱方案网


推荐阅读:

Deepseek背后的伙伴-晶振担当什么角色?

全面掌握LDO稳压器的关键知识点

具备超低的读出噪声、高动态范围,2.71亿超高像素分辨率背照式CMOS图像传感器解决方案

面向车载直流有刷电机的栅极驱动IC的应用方案

提升高瞬态汽车应用,达到速度与效率的双重飞跃

相关资讯
CIS芯片龙头年报解读:格科微高像素战略如何实现287%净利增长

格科微电子(688728.SH)2024年度财务报告显示,公司年度营收突破63.83亿元人民币,实现35.9%的同比增幅,归母净利润呈几何级增长达1.87亿元,EBITDA指标跃升107.13%至14.15亿元。这种爆发式增长源自其在CMOS图像传感器(CIS)领域实施的"技术锚定+场景穿透"双轮驱动战略,特别是在高像素产品矩阵构建和新兴应用市场开拓方面取得突破性进展。

RS2604 vs 传统保险丝:技术迭代下的安全与效率革命

RS2604作为一款高集成度、可配置OVP(过压保护)和OCP(过流保护)的eFuse开关,专为12V24V母线电压接口设计,兼顾热插拔保护与动态负载管理。其输入电压覆盖4.5V40V,极限耐压高达45V,适用于工业设备、汽车电子及消费电子领域。通过外部电阻灵活设置350mA至2.5A的限流值,结合±7%高精度电流检测,RS2604在安全性与能效间实现平衡,成为复杂电源系统的核心保护方案。

全球汽车芯片市场遇冷,恩智浦如何守住56%毛利率防线?

荷兰半导体巨头恩智浦于2025年4月28日披露的财报显示,公司第一季度营收28.35亿美元,同比、环比均下滑9%,但略超市场预期。在汽车、工业与物联网等核心业务需求疲软的背景下,Non-GAAP毛利率同比下降2.1个百分点至56.1%,自由现金流则维持在4.27亿美元,突显其成本控制能力。值得关注的是,管理层对第二季度营收指引中值(29亿美元)释放出环比复苏信号,但关税政策的不确定性仍为业绩蒙上阴影。

全闪存与软件定义双轮驱动——中国存储产业年度趋势报告

根据IDC最新发布的企业级存储市场追踪数据,2024年中国存储产业迎来结构性增长拐点。全年市场规模达69.2亿美元,在全球市场占比提升至22%,展现出强劲复苏态势。以浪潮信息为代表的国内厂商持续突破,在销售额(10.9%)和出货量(11.2%)两大核心指标上均跻身市场前两强,标志着本土存储生态的成熟度显著提升。

索尼启动半导体业务战略重组 图像传感器龙头或迎资本化新篇章

全球消费电子巨头索尼集团近期被曝正酝酿重大战略调整。据彭博社援引多位知情人士透露,该集团拟对旗下核心半导体资产——索尼半导体解决方案公司(SSS)实施部分分拆,计划于2023年内推动该子公司在东京证券交易所独立IPO。该决策标志着索尼在半导体产业布局进入新阶段,同时也预示着全球图像传感器市场格局或将发生重要变化。