提升高瞬态汽车应用,达到速度与效率的双重飞跃

发布时间:2025-03-14 阅读量:1939 来源: 发布人: lina

【导读】为了解决汽车应用中日益提高的电流需求和快速瞬变所带来的挑战,ADI专门设计了耦合电感,并获得了专利。理想情况下,为了获得高效率,需要较大电感值和较小电流纹波,但为了实现快速瞬变,又需要较小电感值。耦合电感利用出色的耦合机制,使其在稳态下表现为一个大电感,从而有效地降低电流纹波。


问题


随着电流摆率和效率要求不断提高,ADI专利耦合电感如何增强汽车应用中多相稳压器的性能?


提升高瞬态汽车应用,达到速度与效率的双重飞跃


回答


为了解决汽车应用中日益提高的电流需求和快速瞬变所带来的挑战,ADI专门设计了耦合电感,并获得了专利。理想情况下,为了获得高效率,需要较大电感值和较小电流纹波,但为了实现快速瞬变,又需要较小电感值。耦合电感利用出色的耦合机制,使其在稳态下表现为一个大电感,从而有效地降低电流纹波。同时,耦合电感在瞬态事件中的电感值较小,且导通较快。这有便于缩小应用尺寸,同时保持高效率,这对于支持1 V以下的负载电压至关重要。此外,其设计有助于加快响应时间,使稳压器能够在不影响性能的情况下管理剧烈的瞬态负载。通过优化电感值,这些耦合电感有助于为ADAS和其他大电流应用中的先进半导体工艺实现所需的必要电压容差、高效率和瞬态规格。


简介


大电流、低电压应用经常采用多相降压转换器拓扑来降低电压。这种多相降压转换器可以利用传统的分立电感(DL,如图1a所示),或利用耦合电感(CL,如图1b所示)。如果是CL,绕组为磁耦合,具有消除电流纹波的优势1-6。


汽车ADAS应用面临的挑战是,如何将GPU或ASIC供电轨严格控制在0.4 V至1 V范围内,尤其是在快速瞬变条件下。负载瞬态通常会导致所有相位将开关节点VX拉高至VIN,因此每相中的电感电流以一定的摆率(式1)逐渐上升,其中VIN为输入电压,Vo为输出电压,L为电感值。卸载瞬态通常会导致所有相位拉低至GND,并且电感电流逐渐下降(式2)。已知低输出电压值VOUT<1 V,并假设输入电压典型值至少为5 V,比较式1和式2很容易看出,卸载瞬态是主要问题,这是因为使电流逐渐下降的电压非常小。


提升高瞬态汽车应用,达到速度与效率的双重飞跃

图1.多相降压转换器,采用(a)分立电感或(b)耦合电感


提升高瞬态汽车应用,达到速度与效率的双重飞跃


简单的解决办法是增加COUT中陶瓷输出电容的数量。然而,这种方法的体积过大、成本过高,有些不切实际。在汽车行业,稳压器往往配置为以相对较高的频率(FS,通常超过2 MHz)进行开关。这与云应用或工业应用中的稳压器形成对比。由于特别的电磁干扰(EMI)要求,汽车环境中需要更高的开关频率。虽然高频有助于减小稳压器中的电感值,但仍然需要进一步改善。


由式3可求出带DL的常规降压转换器各相的电流纹波,其中占空比D = VOUT/VIN,VOUT为输出电压,VIN为输入电压,L为电感值,FS为开关频率。


提升高瞬态汽车应用,达到速度与效率的双重飞跃


用漏感为LK且互感为LM的CL代替DL,则CL中的电流纹波可表示为式46。品质因数(FOM)表示为式5,其中NPH为耦合相数,ρ为耦合系数(式6),j为运行指数,仅定义占空比的适用区间(式7)。CL的参数有漏感LK和互感L M。


提升高瞬态汽车应用,达到速度与效率的双重飞跃


对于特定的CL设计,与采用分立电感L的常规降压转换器相比,式4和式5中的FOM含义可以解释为电流纹波消除所涉及的额外乘数。与具有任意电流纹波和瞬态性能的任何系统相比,业界进一步推广和扩展了FOM的定义及其含义11。建议使用归一化瞬态摆率 (期望较高) 与归一化电流纹波 (期望较低) 的比率 (式8)。对于一些采用分立电感的基准转换器,瞬态摆率和电流纹波通过相关数字进行归一化 (因此任何采用DL的系统仍会导致FOM = 1)。SRTR和ΔIL是所选设计或技术在稳态下的瞬态电流摆率和电流纹波,而SRTR_DL和ΔILDL是同样的参数,但用于基准DL设计。


由于瞬态和稳态下分立电感的电流摆率相同,式8可以简化为式9。这样一来就完全避免了实际提及DL设计,但基准测试的思想仍然存在。


提升高瞬态汽车应用,达到速度与效率的双重飞跃


请注意,对CL使用广义FOM定义(式9)将得到式5,因此新定义是向后兼容的,而且还可用于电流纹波和瞬态摆率与DL公式存在显著差异的技术(例如TLVR9)。


CL设计和考虑因素


应用指标为VIN = 5 V、VOUT = 0.8 V、FS = 2.1 MHz、NPH = 8。开始时,选择DL = 32 nH来支持快速瞬变,而每个电感占用4.2 mm × 4.2 mm × 4.2 mm。理想情况下,这些电感将用8相耦合电感(CL)代替。然而,h = 4 mm的低高度要求带来了难题,因为在这种高度限制下,8相耦合电感器会变得过于细长,难以生产,而且还会更容易受到电路板弯曲变形的影响。因此,我们为CL选择了4相构建模块,这也使得元件的放置和布局更加灵活。我们的目标是获得更快的瞬变,并且已知CL值的纹波将小于起始DL值的纹波。因此,我们采用了近期推出的Notch CL (NCL)结构来尽可能减小漏感LK7,8,10。我们设计了NCL0804,LK约为17 nH,OCL = LM + LK = 100 nH,NPH = 4,相位间距为6.9 mm/相,高度h = 4.0 mm(最大值)(图2)。


提升高瞬态汽车应用,达到速度与效率的双重飞跃

图2.开发的NCL0804-4-R17(h = 4 mm(最大值))


使用FOM图10可以有效比较不同的设计。任何DL设计都会出现FOM = 1,这是因为在稳态和瞬态下,电流摆率的比例为1:1。给定尺寸下,耦合电感的NCL结构会使LM/LK比率最大化,因此通常能够产生最高FOM9。FOM比较如图3所示;在目标输出电压附近,我们开发的NCL比DL好约4.4倍。


表1.四相构建模块不同磁元件方案的比较


电感

高度:mm/相对值

效率,相对值

电流纹波,相对值

瞬态,相对值

瞬态/纹波相对优势(公式9)11

NCL0804-4

最大4.0/1倍

正常

1倍

1倍

4.4倍

DL = 32 nH

最大4.4/大1.1倍

大2.35倍

慢1.9倍

1倍

DL   = 100 nH

最大6.4/大1.6倍

正常

小1.33倍

慢5.9倍

1倍


提升高瞬态汽车应用,达到速度与效率的双重飞跃

图3.相对于输出电压VOUT,开发的NCL = 4× 17 nH和理论NCL = 8× 17 nH的FOM与任何DL的FOM相比较


(VIN = 5 V)


相应的电流纹波比较如图4和表1所示。对电流纹波和瞬态摆率的不同取舍,让DL值的选择范围非常宽,但我们开发的NCL始终有4.4倍的优势。NCL的电流纹波比DL = 32 nH的纹波小2.35倍,同时NCL的瞬态摆率要快1.88倍。2.35×1.88约等于4.4,与预测的FOM = 4.4相匹配。使用DL = 100 nH也可以降低电流纹波,这使其电流纹波比NCL的电流纹波小1.33倍,但NCL的瞬态摆率会快5.88倍,因此NCL相对于任何DL的优势仍然是5.88/1.33,即约等于4.4倍(NCL的FOM = 4.4)。


提升高瞬态汽车应用,达到速度与效率的双重飞跃

图4.相对于输出电压VOUT,比较开发的NCL = 4 × 17 nH和理论NCL = 8 × 17 nH的电流纹波与DL = 32 nH和DL = 100 nH的电流纹波


观察图3中相同NCL的理论FOM,但考虑NPH = 8是否可制造的情况,我们看到NCL相对于DL的性能优势将从4.4倍扩大到5.8倍,而且在VOUT较低时,相对的优势差距更大。


展望未来,我们或许应该考虑NCL的不同设计。一种可能性是将相位排成两排,以保持铁氧体磁芯的长宽比较低,使其有利于制造。在这种情况下,NCL可以放在PCB的底部,直接位于GPU的陶瓷旁路上方,并且功率级围绕在NCL的周边。此方法类似于垂直供电(VPD)布置,有可能会在瞬态和纹波之间取得更好的平衡,也就是可以有效提高瞬态效率。然而,必须注意的是,这样的改动将会显著改变现有的设计和布局。未来将取决于客户的偏好,考虑是否采用这种方法。


实验结果


提升高瞬态汽车应用,达到速度与效率的双重飞跃

图5.稳压器四相构建模块,电感尺寸可为(a) DL = 100 nH(h = 6.4 mm(最大值))和(b) NCL0804-4(h = 4.0 mm(最大值))


用NCL0804-4替代DL = 32 nH电感可以提高效率,如图6所示。这种改善主要是因为电流纹波大幅降低(图4),从而导致绕组、功率级和走线中的电流有效值降低。此外这还有助于降低交流损耗,如图6所示。同时,17 nH/相的NCL(图5b)在瞬态下的电流摆率要快约1.9倍,反馈环路中的相位裕量一般也会得到改善。降低DL = 100 nH的纹波(图5a)可重新提高效率(图6),但这种DL的高度明显高于允许值(h = 4 mm),同时也比我们开发的NCL慢约5.9倍,并且会大大影响所需输出电容的数量。正如基于FOM的估计,结果证实了NCL相对于分立电感方法的不同权衡方案具有根本的性能优势。


提升高瞬态汽车应用,达到速度与效率的双重飞跃

图6.DL = 32 nH (h = 4.4 mm)、DL = 100 nH (h = 6.4 mm)和NCL = 4× 17 nH (h = 4.0 mm)的效率比较:5 V至0.8 V,四相。


结论


综上所述,我们开发了一种采用NCL结构的新型耦合电感,以优化输出电压非常低和负载瞬态指标变化剧烈的应用性能。该CL也是为了适应汽车设计的低高度要求而开发的。选择NCL结构是为了尽可能地减少泄漏。与常规分立电感方案相比,它的瞬态/纹波性能提高了4倍以上。


若分立电感(DL)方案的效率要与所开发的NCL相同,高度须为后者的1.6倍(DL = 100 nH)。然而,这种替代方案的瞬态速度会低5.9倍,从而严重影响输出电容的尺寸和成本。表1的比较结果凸显了NCL0804-4在高度、效率、电流纹波和瞬态速度方面的优势。


参考文献

1      Aaron M. Schultz和Charles R. Sullivan。“Voltage Converter with Coupled Inductive Windings, and Associated Methods”。美国专利6,362,986,2001年3月。

2      Jieli Li。Coupled Inductor Design in DC-DC Converters。硕士论文,达特茅斯学院,2002年。

3      Pit-Leong Wong、Peng Xu、P. Yang和Fred C. Lee。“Performance Improvements of Interleaving VRMs with Coupling Inductors”。《IEEE电源电子会刊》,第16卷第4期,2001年7月。

4      Yan Dong。Investigation of Multiphase Coupled-Inductor Buck Converters in Point-of-Load Applications。博士论文,弗吉尼亚理工学院暨州立大学,2009年7月。

5      Alexandr Ikriannikov和Di Yao。“Addressing Core Loss in Coupled Inductors”。Electronic Design News,2016年12月。

6      Alexandr Ikriannikov。“耦合电感的基础知识和优势”。ADI公司,2021年。

7      Alexandr Ikriannikov和Di Yao。“Switching Power Converter Assemblies Including Coupled Inductors, and Associated Methods”。美国专利11869695B2,2020年11月。

8      Alexandr Ikriannikov。“Evolution and Comparison of Magnetics for the Multiphase DC-DC Applications”。IEEE应用电源电子会议,2023年3月。

9      Amin Fard、Satya Naidu、Horthense Tamdem和Behzad Vafakhah。 “Trans-inductors Versus Discrete Inductors in Multiphase Voltage Regulators: An Analytical and Experimental Comparative Study”。IEEE应用电源电子会议,2023年3月。

10    Alexandr Ikriannikov和Di Yao。 “Converters with Multiphase Magnetics: TLVR vs CL and the Novel Optimized Structure”。PCIM Europe,2023年5月。

11    Alexandr Ikriannikov和Brad Xiao。“Generalized FOM for Multiphase Converters with Inductors”。2023年IEEE能源转换大会暨展览会,2023年10月。

(来源:ADI公司,作者:Jon Wallace,高级总监,Issac Siavashani,首席工程师,Alexandr Ikriannikov,研究员)


免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


我爱方案网


推荐阅读:

基于英诺赛科产品的2KW 48V双向AC/DC储能电源方案

从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南

[换馆定档] IOTE 2025国际物联网展·上海站携手世界移动通信大会(MWC)定档6月上海新国际博览中心!

基于onsemi产品的1500W热泵热水器压缩机驱动器方案

精密测量系统噪声溯源:RTI/RTO建模与仿真实践指南


相关资讯
CIS芯片龙头年报解读:格科微高像素战略如何实现287%净利增长

格科微电子(688728.SH)2024年度财务报告显示,公司年度营收突破63.83亿元人民币,实现35.9%的同比增幅,归母净利润呈几何级增长达1.87亿元,EBITDA指标跃升107.13%至14.15亿元。这种爆发式增长源自其在CMOS图像传感器(CIS)领域实施的"技术锚定+场景穿透"双轮驱动战略,特别是在高像素产品矩阵构建和新兴应用市场开拓方面取得突破性进展。

RS2604 vs 传统保险丝:技术迭代下的安全与效率革命

RS2604作为一款高集成度、可配置OVP(过压保护)和OCP(过流保护)的eFuse开关,专为12V24V母线电压接口设计,兼顾热插拔保护与动态负载管理。其输入电压覆盖4.5V40V,极限耐压高达45V,适用于工业设备、汽车电子及消费电子领域。通过外部电阻灵活设置350mA至2.5A的限流值,结合±7%高精度电流检测,RS2604在安全性与能效间实现平衡,成为复杂电源系统的核心保护方案。

全球汽车芯片市场遇冷,恩智浦如何守住56%毛利率防线?

荷兰半导体巨头恩智浦于2025年4月28日披露的财报显示,公司第一季度营收28.35亿美元,同比、环比均下滑9%,但略超市场预期。在汽车、工业与物联网等核心业务需求疲软的背景下,Non-GAAP毛利率同比下降2.1个百分点至56.1%,自由现金流则维持在4.27亿美元,突显其成本控制能力。值得关注的是,管理层对第二季度营收指引中值(29亿美元)释放出环比复苏信号,但关税政策的不确定性仍为业绩蒙上阴影。

全闪存与软件定义双轮驱动——中国存储产业年度趋势报告

根据IDC最新发布的企业级存储市场追踪数据,2024年中国存储产业迎来结构性增长拐点。全年市场规模达69.2亿美元,在全球市场占比提升至22%,展现出强劲复苏态势。以浪潮信息为代表的国内厂商持续突破,在销售额(10.9%)和出货量(11.2%)两大核心指标上均跻身市场前两强,标志着本土存储生态的成熟度显著提升。

索尼启动半导体业务战略重组 图像传感器龙头或迎资本化新篇章

全球消费电子巨头索尼集团近期被曝正酝酿重大战略调整。据彭博社援引多位知情人士透露,该集团拟对旗下核心半导体资产——索尼半导体解决方案公司(SSS)实施部分分拆,计划于2023年内推动该子公司在东京证券交易所独立IPO。该决策标志着索尼在半导体产业布局进入新阶段,同时也预示着全球图像传感器市场格局或将发生重要变化。