从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南

发布时间:2025-03-14 阅读量:3210 来源: 发布人: lina

【导读】噪声敏感器件的功耗不断提高。医疗超声成像系统、5G收发器和自动测试设备(ATE)等应用需要在面积较小的PCB上实现高输出电流(>5 A)、低噪声水平和高带宽。由于对输出电流的需求较高,以前使用的传统双级(降压+低压差(LDO)稳压器)解决方案需要的PCB面积较大,导致功耗较高,因此不太受欢迎。


问题

能否进一步降低超低噪声µModule®稳压器的输出开关噪声?


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南


回答


使用二阶输出滤波器可将超低噪声µModule稳压器的输出噪声降低90%以上。选择电容和电感元件时必须谨慎,以确保控制回路能够快速且稳定地运作。这种设计对于无线和射频应用特别有益,因为快速瞬态响应可有效缩短系统消隐时间并提升信号处理效率。此方法的噪声水平与LDO相当,效率堪比开关稳压器。


简介


噪声敏感器件的功耗不断提高。医疗超声成像系统、5G收发器和自动测试设备(ATE)等应用需要在面积较小的PCB上实现高输出电流(>5 A)、低噪声水平和高带宽。由于对输出电流的需求较高,以前使用的传统双级(降压+低压差(LDO)稳压器)解决方案需要的PCB面积较大,导致功耗较高,因此不太受欢迎。


LTM4702超低噪声µModule稳压器采用ADI公司专有的Silent Switcher®技术,兼具超快瞬态响应和超低噪声特性。得益于此,该器件的效率可与同步开关稳压器相媲美,是大电流和噪声敏感型应用的理想选择。在许多应用中,该解决方案可以省去LDO电路,从而节省约60%的LDO成本、至少4 W的LDO功耗以及2 cm²以上的LDO PCB空间(包括间隙)。


众所周知,对于某些要求开关频率纹波非常小的应用,二阶LC滤波器可以降低输出电压的开关频率谐波。然而,若是既要尽量减小开关纹波,又要维持控制环路稳定和其高带宽,仅依靠这种方法是不可行的,未经优化的LC滤波器会使控制环路变得不稳定,导致输出振荡。本文先分析了二阶LC滤波器的简化环路,然后提出了用于指导电容分配和电感计算的直观设计方法,最后通过LTM4702设计示例验证了所提出的设计方法。


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南

图1.电流模式降压稳压器以及二阶LC及其典型波特图


二阶LC输出滤波器设计的环路分析


在电流模式降压稳压器中,输出阻抗是控制对象。图1为二阶LC的电路及其典型波特图。为了在有负载时仍能准确调节直流电压,需要检测VOUT远端节点B。


从VOUT到iLO的转换函数为:


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南


从转换函数(公式1)可知,二阶LC滤波器会引入频率为谐振频率的双极点。


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南


从图1中的典型波特图可以看出,在谐振频率处存在陡峭的90°相位延迟。为确保稳定性,谐振频率应比控制环路带宽高4到5倍,这是为了避免可能导致不稳定的90°相位延迟。此外,为使开关频率纹波衰减到足够低的水平,此谐振频率应设置为开关频率的1/5到1/4,以便LC滤波器能够提供足够的滤波效果。开关频率下的衰减增益和控制环路带宽之间存在此消彼长的关系。但这种方法有助于选择谐振频率,并确定合适的LC值。


为了保持相似的负载瞬态性能,添加LC滤波器前后的输出阻抗应该保持一致。换句话说,无论有没有LC滤波器,输出电容都应该大致相同。根据以往的经验,图1中C2的电容值可以与未使用LC时相似,而C1可以使用小得多的电容,以便C1可以主导谐振频率位置。由于C1远小于C2,公式2可以简化为公式3:


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南


建议C1至少为C2值的十分之一。选定C1之后,就可以使用公式3中的谐振频率计算出Lf值。通过检查实际元件的可用性,可以确定合适的C1和Lf值。


元件选择注意事项


在有效二阶LC滤波器设计中,电容和电感元件的选择至关重要。二阶LC滤波器需要在开关频率下提供足够大的衰减。超低噪声µModule稳压器的开关频率较高,约为1 MHz至3 MHz,因此二阶LC中的电感和电容需具备良好的高频特性。C2的选择要求与没有LC的设计类似,因此这里不作讨论。C1和Lf的选择标准如下。


►C1电容的选择标准。

1.C1的自谐振频率必须高于开关频率。开关频率下C1的阻抗是二阶LC设计的关键。建议使用陶瓷电容,其自谐振频率可参考其阻抗与频率的关系曲线来确定。通常,典型的0603或0805尺寸陶瓷电容是理想选择,其自谐振频率必须在3 MHz以上。

2.为了承受所需电流,RMS电流额定值应足够高。假设所有交流纹波都经过C1,那么陶瓷电容应能处理较大的RMS纹波电流。可参考陶瓷电容的温升与电流的关系曲线来确定其电流能力。根据经验来看,对于0603尺寸的电容器,约4 A rms是个不错的选择。


►Lf电感的选择标准

1.对于8A以下的输出电流,建议使用铁氧体磁珠,因为它具有良好的高频特性且尺寸紧凑。铁氧体磁珠也有助于抑制极高频率的尖峰1。对于8 A以上的输出电流,或者需要较大电感,可能很难找到合适的铁氧体磁珠,因此建议使用传统的屏蔽电感。

2.选择RMS电流额定值足够大的铁氧体磁珠/电感,例如,对于8 A以下的输出电流,选择RMS电流额定值为8 A的电感。建议所选器件的电感值小于µModule器件电感值的10%。


超低噪声µModule设计示例


图2为LTM4702的设计示例。该方案兼具超低电磁干扰(EMI)辐射和超低有效值噪声特性,开关频率可在300 kHz至3 MHz范围内调节。在设计示例中,开关频率设置为2 MHz,以优化12 VIN至1 VOUT应用的噪声性能。根据所提出的LC滤波器设计方法,二阶LC的谐振频率设置为400 kHz至500 kHz,是开关频率的1/5至1/4。


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南

图2.LTM4702示例电路和电路板照片


目标控制环路带宽为100 kHz,LC谐振频率是其4到5倍;C1使用两个0603 4.7 µF电容;铁氧体磁珠BLE18PS080SH1用作Lf,其尺寸为0603,如图2所示;C2仍使用两个1206 100 µF陶瓷电容;谐振频率为424 kHz。


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南


噪声测量对比如图3所示。在2 MHz开关频率下,无LC的输出开关纹波为234 µV,添加0603铁氧体磁珠后大幅降低至15 µV。


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南

图3.无LC的开关噪声(234 µV)与有LC的开关噪声(15 µV)


为尽可能降低噪声而添加的二阶LC滤波器,能够将控制环路带宽维持在100 kHz,并保持快速瞬态响应,恢复时间小于10 µs。这些结果可以通过对比有无LC滤波器的实验评估来确认。由于恢复时间在10 µs内,消隐时间可以忽略不计,这对于无线和射频应用是非常不错的表现。ADI公司的LTM4702帮助系统设计开发者解决了负载瞬态消隐时间挑战,避免了信号处理效率低下的问题。


图4的负载瞬态波形验证了添加二阶LC滤波器后,设计具有快速瞬态响应,并且恢复时间在10 µs内,与没有此滤波器的设计示例相比也毫不逊色。


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南

图4.负载瞬态结果:无LC与有LC(恢复时间在10 µs内)


结论


如何在支持大电流应用的同时尽量减少噪声,并确保高效率和稳定性,是一项棘手难题。添加二阶LC滤波器可以显著降低噪声,但如果优化不当,可能会导致电路不稳定。为了在不影响稳定性的前提下尽可能地降低噪声,应使用优化的二阶LC滤波器。基于开关频率、控制环路带宽和谐振频率精心选择所需的电感和电容元件,可以有效降低开关噪声,同时保持快速瞬态响应和高带宽特性。


参考文献


1 Jim Williams.“AN101:尽可能地减少线性稳压器输出中的开关稳压器残留物”。凌力尔特,2005年7月。

(来源:ADI公司,作者:George (Zhijun) Qian,高级模拟设计工程经理,Jennifer Florence Joseph Benedicto,高级设计评估工程师)


免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


我爱方案网


推荐阅读:

[换馆定档] IOTE 2025国际物联网展·上海站携手世界移动通信大会(MWC)定档6月上海新国际博览中心!

基于onsemi产品的1500W热泵热水器压缩机驱动器方案

精密测量系统噪声溯源:RTI/RTO建模与仿真实践指南

基于Infineon产品的3.3KW双向图腾柱PFC数字电源方案

如何在传感器近端实现量化热电偶高效输出?

相关资讯
国产感烟探测器MCU破局:BA45F25343/53/63如何实现精度与成本双赢?

在消防安全需求升级与物联网技术融合的背景下,Holtek(盛群半导体)推出BA45F25343/53/63系列MCU,以双通道感烟AFE(模拟前端)为核心,结合高度集成的电源管理与智能算法,实现感烟探测器在精度、成本、可靠性三大维度的突破性提升。该系列通过内置双通道LED驱动、5V/9V多电压输出及失效报警功能,不仅解决了传统方案外围电路复杂、误报率高(行业平均>2%)的痛点,更以国产替代能力打破海外厂商(如ADI、Microchip)在高端消防芯片市场的垄断,成为智能消防终端、工业安全监测等场景的行业标杆。随着智慧城市与安规政策驱动,BA45F系列有望在百亿级消防物联网市场中占据核心地位。

能效与体积的双重革命:解码Microchip新一代电源模块的六大核心优势

在边缘计算与工业自动化高速发展的当下,电源管理技术正面临高密度集成与能耗优化的双重挑战。Microchip推出的MCPF1412高效全集成12A电源模块,以行业领先的5.8mm³超小封装、95%以上能效转换率及智能化数字接口,直击设备小型化与能源损耗的核心痛点。本文从技术解析、性能突围、国产替代路径及市场前景多维度切入,深度剖析该模块如何通过创新的LDA封装与PMBus®兼容设计,在工业控制、数据中心及新能源领域重构电源管理标准,为国产替代与全球竞争提供关键技术启示。

16nm工艺硬核突围 易灵思车载FPGA技术图谱深度解析

在第二十一届上海国际车展的智能驾驶技术专区,易灵思(展位2BC104)首次公开展示其钛金系列FPGA完整技术生态,两款基于16nm FinFET工艺的旗舰产品Ti60/Ti180,配合全栈式开发平台,构建起覆盖智能座舱、自动驾驶域控制器、车载传感三大核心场景的解决方案。

颠覆性技术突破!英特尔18A工艺斩获四大客户,台积电2nm制程迎来劲敌

全球半导体制造格局迎来关键变量。根据产业链最新消息,英特尔的Intel 18A制程节点已获得英伟达、博通、IBM等多家行业巨头的代工订单,首批验证芯片反馈积极。这意味着在台积电主导的先进制程领域,美国本土终于出现具备竞争力的替代方案。

“舱驾一体”时代来临:深度解析天玑C-X1如何挑战高通霸主地位

在2025年上海国际车展上,联发科技(MediaTek)以天玑汽车旗舰座舱平台C-X1与联接平台MT2739的发布,正式吹响了“AI定义座舱”的号角。作为全球首款基于3nm制程的车规级芯片,C-X1凭借双AI引擎架构、NVIDIA Blackwell GPU集成及400TOPS的端侧AI算力,不仅突破了传统车载芯片的算力天花板,更通过云端-端侧一致性开发生态,实现了低延迟语音交互、实时旅程规划等生成式AI功能的规模化落地。而MT2739作为5G-Advanced技术的标杆性产品,率先支持3GPP R18协议及卫星通信技术,解决了复杂场景下的网络稳定性难题。这两大平台的协同,标志着MediaTek在智能汽车领域完成了从芯片性能到生态整合的全链条布局,直面高通8155等竞品的市场优势,并加速国产替代进程。随着智能座舱渗透率预计在2025年突破60%,MediaTek正以技术革新重塑行业格局,推动中国汽车芯片从“跟随”迈向“引领”的跨越式发展。