寻找自动测试设备中PhotoMOS开关的替代方案

发布时间:2025-02-27 阅读量:4693 来源: 发布人: lina

【导读】人工智能(AI)应用对高性能内存,尤其是高带宽内存(HBM)的需求不断增长,芯片设计因此变得更加复杂。自动测试设备(ATE)厂商是验证这些芯片的关键一环,目前正面临着越来越大的压力,需要不断提升自身能力以满足这一需求。传统上,在存储器晶圆探针电源应用中,PhotoMOS开关因其良好的低电容乘电阻(CxR)特性而得到采用。低CxR有助于减少信号失真,改善开关关断隔离度,同时实现更快的开关速度和更低的插入损耗。


摘要

本文提出,CMOS开关可以取代自动测试设备(ATE)厂商使用的PhotoMOS®开关。CMOS开关的电容乘电阻(CxR)性能可以与PhotoMOS相媲美,且其导通速度、可靠性和可扩展性的表现也很出色,契合了先进内存测试时代ATE厂商不断升级的需求。

简介

人工智能(AI)应用对高性能内存,尤其是高带宽内存(HBM)的需求不断增长,芯片设计因此变得更加复杂。自动测试设备(ATE)厂商是验证这些芯片的关键一环,目前正面临着越来越大的压力,需要不断提升自身能力以满足这一需求。传统上,在存储器晶圆探针电源应用中,PhotoMOS开关因其良好的低电容乘电阻(CxR)特性而得到采用。低CxR有助于减少信号失真,改善开关关断隔离度,同时实现更快的开关速度和更低的插入损耗。

除了上述优点外,PhotoMOS开关的关态电压也较高,但也存在一些局限性,主要体现在可靠性、可扩展性和导通速度方面。其中,导通速度较慢一直是客户不满的一大原因。

为了应对这些挑战,ADI公司开发出了新型开关来取代存储器晶圆探针电源应用中的PhotoMOS。ADI开关不仅导通速度非常快,而且同样具备低CxR特性,可以确保高效切换。此外还具有良好的扩展性,能够改善测试的并行处理能力,使ATE能够处理更大规模、速度更快的测试任务。如今AI应用对高效和高性能内存测试的需求日益增长,为此,ATE公司正积极寻求更优的解决方案。在这种背景下,ADI开关凭借一系列出色特性,成为了PhotoMOS的有力替代方案。

应用原理图

在ATE设置中,开关扮演着非常重要的角色。开关能够将多个被测器件(DUT)连接到同一个测量仪器(例如参数测量单元PMU),或者将它们从测量仪器上断开,以便执行测试流程。具体来说,开关使得PMU能够高效地向不同DUT施加特定电压,并检测这些DUT反馈的电流。开关能够简化测试流程,在需要同时或依次测试多个DUT的情况下,这种作用更加突出。通过使用开关,我们可以将PMU的电压分配到多个DUT,并检测其电流,这不仅提高了测试效率,还大幅减少了每次测试之间重新配置测试装置的麻烦。


寻找自动测试设备中PhotoMOS开关的替代方案

图1.PMU开关应用


寻找自动测试设备中PhotoMOS开关的替代方案

图2.PhotoMOS和CMOS开关架构


图1展示了如何利用开关轻松构建矩阵配置,使得一个PMU就能评估多个DUT。这种配置减少了对多个PMU的需求,并简化了布线,从而显著提高了ATE系统的灵活性和可扩展性,对于大批量或多器件的测试环境至关重要。

开关架构

为便于理解评估研究(即利用开发的硬件评估板对PhotoMOS开关和CMOS开关进行比较)以及研究得出的结果,这里比较了PhotoMOS开关和CMOS开关的标准。从二者的开关架构开始比较更易于看出差别。

CMOS开关和PhotoMOS开关的架构不同,图2显示了开关断开时的关断电容(COFF)。该寄生电容位于输入源极引脚和输出引脚之间。

对于PhotoMOS开关,COFF位于漏极输出引脚之间。此外,PhotoMOS开关具有输入到输出电容(也称为漏极电容),同时在其用于导通和关断输出MOSFET的发光二极管(LED)级也存在输入电容。

对于CMOS开关,COFF位于源极和漏极引脚之间。除了COFF之外,CMOS开关还有漏极对地电容(CD)和源极对地电容(CS)。这些对地电容也是客户在使用CMOS开关时经常抱怨的问题。

当任一开关使能时,输入信号便可传输至输出端,此时源极和漏极引脚之间存在导通电阻(RON)。通过了解这些架构细节,我们可以更轻松地分析评估研究中的电容、RON和开关行为等性能指标,确保为特定应用选择正确的开关类型。

开关规格和附加值

为了更好地对开关进行定性和定量评估,应该考察其在系统设计应用中带来的附加值。如上所述,对于图1所示应用,ADG1412是理想选择,可以轻松替代PhotoMOS开关。这款CMOS开关是四通道单刀单掷(SPST)器件,拥有出色的特性,包括高功率处理能力、快速响应时间、低导通电阻和低漏电流等。设计人员可以通过比较表1列出的重要指标,评估CMOS开关性能并打分,从而量化其相对于其他替代方案的优势。这有助于更深入地了解器件的信号切换效率,对于复杂或敏感的电子系统非常有帮助。


表1.开关规格


评估标准

PhotoMOS
  1-Form-A (1)

ADG1412
  (四通道SPST)

附加值

记分卡

漏电流

1 nA

30 pA

非常适合漏电流测试;输出端电压误差贡献更小

CMOS开关更好

COFF

0.45 pF

1.6 pF

波形失真更小,隔离度更高

PhotoMOS
  开关更好

RON

12 Ω

1.5 Ω

输出端信号压降较低,插入损耗更低

CMOS开关更好

(CxR)乘积

5.4 pF. Ω

2.4 pF.Ω*

波形失真更小、隔离度更高、信号损失较低

PhotoMOS开关略胜一筹因为其漏极电容较低

漏极电

[CD(OFF)]

1 pF

23 pF

值越高,CxR性能越差,导致输入信号失真,关断隔离度降低

PhotoMOS
  开关更好

导通速度

200 μs

100 ns

切换能力较快

CMOS开关更好

电压、

电流能力

(32 V、120 mA)

(32 V、250 mA)

能够将更多输出驱动电流传输到负载

CMOS开关更好

成本/通道

有助于提高通道密度,成本最多降低50%

CMOS开关更好

封装面积

3.55 mm2

每个开关4.00mm2

布局后开关面积非常接近

非常接近

* CD(OFF)会影响CxR乘积性能

关断隔离:开关断开时的电容

两种开关的关断隔离曲线(图3)表明,输入信号受到高度抑制(100 kHz时为-80 dB),未到达输出端。随着频率提高,PhotoMOS的性能开始略高一筹,二者相差-10 dB。对于图1所示的开关应用(直流(DC)切换),开关电容并不重要,重要的开关参数是低漏电流、高导通速度和低插入损耗。


寻找自动测试设备中PhotoMOS开关的替代方案

图3.关断隔离曲线


插入损耗:开关导通电阻

低RON的开关至关重要。I*R电压降会限制系统性能。各器件之间以及温度变化引起的RON波动越小,测量误差就越小。图4中的插入损耗曲线显示,在100 kHz频率下,PhotoMOS开关的插入损耗为-0.8 dB,而CMOS开关的插入损耗仅为-0.3 dB。这进一步证实了CMOS开关具有较低的RON (1.5 Ω)。


寻找自动测试设备中PhotoMOS开关的替代方案

图4.插入损耗曲线


寻找自动测试设备中PhotoMOS开关的替代方案

图5.开关导通时间


开关导通时间

当驱动使能/逻辑电压施加到任一开关上,使其闭合并将输入信号传递到输出端时,如果使用的是PhotoMOS开关,则会存在明显的延迟(如图5所示)。这种较慢的导通速度由于LED输入级的输入电容,以及内部电路将电流转换为驱动MOSFET栅极所需电压的过程中产生的延迟造成的。导通速度慢一直是客户不满的主要原因,而且会影响系统整体应用的速度和性能。相比之下,CMOS开关的导通速度(100 ns)是PhotoMOS开关(200,000 ns)的2000倍(×2000),更能满足系统应用所需。

设计迁移:PhotoMOS替换为ADG1412开关

如果系统中使用的是PhotoMOS开关,并且遇到了测量精度不高、导通速度慢导致系统资源占用过多,以及难以提高通道密度等问题,那么升级到采用CMOS开关的方案将使开发变得非常简单。图6显示了PhotoMOS开关与CMOS开关的连接点对应关系。因此,系统设计可以利用CMOS开关,以更低的成本实现更高的通道密度。


寻找自动测试设备中PhotoMOS开关的替代方案

图6.开关连接点


ADI开关可提高通道密度

表2列出了一些能够提高通道密度的ADI开关示例。这些开关具有与ADG1412类似的性能优势,导通电阻更低(低至0.5 Ω),而且成本比PhotoMOS开关还低。这些开关提供串行外设接口(SPI)和并行接口,方便与控制处理器连接。

表2.能够提高通道密度的ADI开关示例


产品

RON (Ω)

开关配置

1ku标价/通道 ($)

ADG2412

0.5

四通道SPST

非常有竞争力

ADG6412

0.5

四通道SPST

非常有竞争力

ADGS2414D

0.56

SPI:

八通道SPST

非常有竞争力


结论

本文着重说明了CMOS开关的潜力。在ATE应用中,ADG1412可以很好地取代PhotoMOS开关。比较表明,CMOS开关的性能达到甚至超过了预期,尤其是在对开关电容或漏极电容要求不高的场合。此外,CMOS开关还拥有显著的优势,例如更高的通道密度和更低的成本。

ADI公司的CMOS开关产品系列非常丰富,不仅提供导通电阻更低的型号,还支持并行和SPI两种控制接口,从而更加有力地支持了在ATE系统中使用CMOS开关的方案。
(来源:ADI公司,作者:Edwin Omoruyi,高级应用工程师)


免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


我爱方案网


推荐阅读:

低功耗MCU上的人工智能与机器学习实现策略

硅基功率开关正逐步被GaN开关取代?

利用软件方法超越硬件束缚对嵌入式系统设计进行革新

48V系统是撬动汽车市场收益的金钥匙

基于英诺赛科产品的48V/120A BMS方案

相关资讯
CIS芯片龙头年报解读:格科微高像素战略如何实现287%净利增长

格科微电子(688728.SH)2024年度财务报告显示,公司年度营收突破63.83亿元人民币,实现35.9%的同比增幅,归母净利润呈几何级增长达1.87亿元,EBITDA指标跃升107.13%至14.15亿元。这种爆发式增长源自其在CMOS图像传感器(CIS)领域实施的"技术锚定+场景穿透"双轮驱动战略,特别是在高像素产品矩阵构建和新兴应用市场开拓方面取得突破性进展。

RS2604 vs 传统保险丝:技术迭代下的安全与效率革命

RS2604作为一款高集成度、可配置OVP(过压保护)和OCP(过流保护)的eFuse开关,专为12V24V母线电压接口设计,兼顾热插拔保护与动态负载管理。其输入电压覆盖4.5V40V,极限耐压高达45V,适用于工业设备、汽车电子及消费电子领域。通过外部电阻灵活设置350mA至2.5A的限流值,结合±7%高精度电流检测,RS2604在安全性与能效间实现平衡,成为复杂电源系统的核心保护方案。

全球汽车芯片市场遇冷,恩智浦如何守住56%毛利率防线?

荷兰半导体巨头恩智浦于2025年4月28日披露的财报显示,公司第一季度营收28.35亿美元,同比、环比均下滑9%,但略超市场预期。在汽车、工业与物联网等核心业务需求疲软的背景下,Non-GAAP毛利率同比下降2.1个百分点至56.1%,自由现金流则维持在4.27亿美元,突显其成本控制能力。值得关注的是,管理层对第二季度营收指引中值(29亿美元)释放出环比复苏信号,但关税政策的不确定性仍为业绩蒙上阴影。

全闪存与软件定义双轮驱动——中国存储产业年度趋势报告

根据IDC最新发布的企业级存储市场追踪数据,2024年中国存储产业迎来结构性增长拐点。全年市场规模达69.2亿美元,在全球市场占比提升至22%,展现出强劲复苏态势。以浪潮信息为代表的国内厂商持续突破,在销售额(10.9%)和出货量(11.2%)两大核心指标上均跻身市场前两强,标志着本土存储生态的成熟度显著提升。

索尼启动半导体业务战略重组 图像传感器龙头或迎资本化新篇章

全球消费电子巨头索尼集团近期被曝正酝酿重大战略调整。据彭博社援引多位知情人士透露,该集团拟对旗下核心半导体资产——索尼半导体解决方案公司(SSS)实施部分分拆,计划于2023年内推动该子公司在东京证券交易所独立IPO。该决策标志着索尼在半导体产业布局进入新阶段,同时也预示着全球图像传感器市场格局或将发生重要变化。