模数转换器在高精度数据采集系统的应用方案

发布时间:2024-12-20 阅读量:6228 来源: 发布人: lina

【导读】市场对工业应用的需求与日俱增,数据采集系统是其中的关键设备。它们通常用于检测温度、流量、液位、压力和其他物理量,随后将这些物理量对应的模拟信号转换为高分辨率的数字信息,再由软件做进一步处理。此类系统对精度和速度的要求越来越高,这些数据采集系统由放大器电路和模数转换器(ADC)组成,其性能对系统具有决定性的影响。


市场对工业应用的需求与日俱增,数据采集系统是其中的关键设备。它们通常用于检测温度、流量、液位、压力和其他物理量,随后将这些物理量对应的模拟信号转换为高分辨率的数字信息,再由软件做进一步处理。此类系统对精度和速度的要求越来越高,这些数据采集系统由放大器电路和模数转换器(ADC)组成,其性能对系统具有决定性的影响。

然而,ADC的输入驱动器也会影响整体精度,该驱动器用于缓冲和放大输入信号。此外,还必须增加偏置信号或生成全差分信号,以覆盖ADC的输入电压范围并满足其共模电压要求,在此过程中不得改变原始信号。可编程增益仪表放大器(PGIA)通常用作输入驱动器。在本文中,我们提出了一种输入驱动器和ADC的组合,通过这种组合可以实现非常精确的转换结果,从而构建高质量的数据采集系统。

例如,LTC6373就是一款适用于高精度数据采集系统的PGIA,除了全差分输出,它还具有高直流精度、低噪声、低失真(见图2)以及4 MHz的高带宽,增益为1/4~16。ADC可以通过它直接驱动,因此适合许多信号调理应用。

图1中的电路显示了使用LTC6373来驱动精密ADC的示例,ADC是具有1.8 MSPS的20位分辨率的AD4020。


模数转换器在高精度数据采集系统的应用方案
图1. 驱动精密ADC的电路示例。


在该电路中,LTC6373在输入端和输出端直流耦合,因而不需要使用变压器来驱动ADC。增益可通过引脚A2/A1/A0在0.25 V/V至16 V/V 之间进行设置。在图1中,LTC6373采用差分输入至差分输出配置和±15 V对称电源电压。或者,输入也可以是单端输入,而输出仍然是差分输出。

在图1中,输出共模电压通过VOCM引脚设置为VREF/2。这样就可实现LTC6373的输出电平转换。LTC6373的每个输出在0 V至VREF之间变化,因此在ADC输入端有一个2× VREF幅度的差分信号。LTC6373的输出端和ADC输入端之间的RC网络形成一个单极点低通滤波器,它可降低在ADC输入端切换电容时产生的电流毛刺。同时,低通滤波器限制了宽带噪声。


模数转换器在高精度数据采集系统的应用方案图2. 使用LTC6373驱动AD4020的SNR(左)和THD(右)性能。


图2显示LTC6373的信噪比(SNR)和总谐波失真(THD),其在整个输入电压范围(10V p-p)内驱动AD4020 SAR ADC(高阻态模式)。在吞吐量为1.8 MSPS,滤波器电阻(RFILTER)为442 Ω时可获得比较满意的效果。在1 MSPS或0.6 MSPS时,制造商建议RFILTER为887 Ω。

LTC6373可驱动大多数具有差分输入的SAR ADC,不需要另外增加 ADC驱动器。但是,在某些应用中,在LTC6373和精密ADC之间可以使用单独的ADC驱动器来进一步提高信号链的线性度。

结论

图1中所示的电路针对快速、高精度数据采集系统进行了优化。因此,LTC6373的出色特性有助于对传感器输出信号进行信号调理。借助在线工具ADI Precision Studio,特别是其中包含的ADC驱动器工具,ADI公司可以为此类放大级、滤波器和线性电路设计提供更多支持。


免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。




我爱方案网


推荐阅读:

探索体外除颤器中电容器的关键作用

自动化测试仪与编码器监测实用指南

深入剖析热插拔控制器中的寄生振荡现象

基于炬芯科技产品的蓝牙音箱方案

集成式紧凑型CAN FD系统基础芯片解决方案,专为空间受限应用而设计

相关资讯
Diodes Q2财务报告:营收超预期增长,连续三季度同比上扬

Diodes公司近期公布了截至2025年6月30日的第二季度财务业绩,标志着其连续三个季度实现同比增长,显示出半导体市场的稳步复苏。根据报告,该公司在多个关键财务指标上表现稳健,受益于全球需求的逐步回升和市场结构优化。公司高层认为,这一业绩源于亚洲地区的强劲拉动和产品组合的适应性调整。

MACOM Q3营收同比激增32.3%,射频芯片龙头再创增长新高

美国射频半导体龙头企业MACOM Technology Solutions于8月7日正式公布截至2025年7月4日的第三财季业绩报告。财报显示,当季实现营收2.521亿美元,较去年同期大幅增长32.3%,创下近三年最高单季增速。

Microchip复苏计划成效显著:Q1营收环比增10.8%,库存大幅优化,AI/国防订单强劲

美国微芯科技公司(Microchip Technology)于8月7日发布了其2026财年第一季度(截至2025年6月30日)的财务报告。报告显示,公司业绩呈现显著复苏迹象,多项关键指标环比改善,并超出此前修订后的业绩指引。

产需趋向平衡!赛力斯7月新能源销量占比突破93%

8月8日,赛力斯集团(601127)公布2025年7月产销快报。数据显示,尽管整体市场仍承压,集团在主力新能源汽车板块显现增长韧性,单月销量同比提升5.7%,而传统燃油车型业务持续收缩,反映出业务转型的深化推进。

INS1011SD + VGaN™:颠覆传统BMS的低边保护方案

在追求更高效率、更小体积和更低成本的电力电子系统发展趋势下,传统的硅基(Si)功率器件,特别是在双向能量流动应用(如电池管理系统BMS)中常用的背靠背MOSFET方案,逐渐显现出性能瓶颈。氮化镓(VGaN™)器件凭借其卓越的开关速度、低导通电阻和更小的尺寸,成为理想的替代者。然而,充分发挥VGaN™的潜力需要与之高度匹配的专用驱动芯片。英诺赛科(Innoscience)作为全球领先的VGaN™ IDM厂商,推出全球首款100V低边驱动芯片INS1011SD,标志着“VGaN™+专用驱动”完整解决方案的成熟,为双向电力电子系统设计带来革命性突破。