发布时间:2024-06-17 阅读量:1712 来源: 综合自网络 发布人: wenwei
【导读】寄生电容有一个通用的定义:寄生电容是存在于由绝缘体隔开的两个导电结构之间的虚拟电容(通常不需要的),是 PCB 布局中的一种效应,其中传播的信号表现得好像就是电容,但其实并不是真正的电容。寄生电容通常出现在被电介质隔开的任何一对导体之间。
一、什么导致寄生电容?
在高频下,电路板中的电流受到寄生电容的影响。因为当频率增加时,电容器往往会变成导体。请注意,当频率增加时,电容器将充当值非常小的电阻器(接近短路),导致电流过大。
ZC= 1/2πfC;FC= 1/ωC因此,随着频率的增加,ZC也增加。
寄生电容会在高频操作期间让您发冷,因为电容器在无限频率下就像一根电线。这就是为什么它会意外地将任何 PCB 的参考平面连接到机箱的原因。
寄生电容效应可能是串扰和噪声、来自输出的不良反馈以及谐振电路的形成。因此,必须注意整体印刷电路板设计,特别是布局。在将一个导电体放置在另一个导电体的旁边时,良好的布局应格外小心。
二、PCB 寄生电容的影响
(1)传输线中的频带限制行为,在非常高的频率下产生低通滤波器行为。
(2)不同电位地之间的噪声耦合,导致共模噪声。
(3)噪声或信号耦合到组件中,尤其是绕线电感。
(4)高频电容串扰(表现为 FEXT 和 NEXT)。
(5)由于电源层和接地层之间的间距而导致的 PDN 阻抗修改。
(6)EMI 耦合到散热器中,产生共模电流。
三、PCB 寄生电容怎么消除?
PCB 布局永远不会完全消除寄生电容,但你可以减少PCB 布局中的寄生电容或者采取一些措施来限制寄生电容对信号和电源完整性的影响。这里列举9条可以减少 PCB 布局中的寄生电容的措施:
1、避免平行布线
采用平行布线时,金属之间的面积最大,寄生电容也会最大。
2、移除电源层
电源层通常被认为是交流接地,与接地层完全相同,所以移除电源层与移除导体附近的接地层一样重要。
3、使用法拉第屏蔽或保护环
将法拉第屏蔽放置在两条迹线之间以最大程度地减少寄生电容效应。
4、关键走线尽可能窄和短
为了最大限度地减少寄生电容,使关键走线尽可能窄,以使 PCB 工艺可以处理,与附近的走线保持良好的距离。
5、避免过度使用过孔
过孔的过度使用会增加寄生电容,最好尽可能用贴片来代替过孔。
6、避免元件分离
元件之间、电源层和接地层,输出和输入等的正确接线,对减少不需要的寄生电容非常重要。
7、信号层应该夹在两个地平面之间,或者夹在一个地平面或一个电源平面之间
在 4 层板中,您可以将电源平面放置在底层,并在电源平面和接地平面之间布置一些敏感的走线。这将防止来自一层信号的 EMI 引起另一层信号中的噪声。
8、确定正确的层厚
较薄的层会减少环路面积和寄生电感,但会增加寄生电容。您可以使用具有不同层堆栈的模拟工具来确定正确的层厚度。
9、阻抗匹配
在高速数字应用中,多条数据线以数十 Gbps 的速度运行,由于寄生电容和电感而导致阻抗不匹配。寄生效应引起的任何不匹配都会在线路上的某处产生反射,最终增加时序抖动和误码率。传输高速数据的信号线的阻抗应该匹配。
在智能驾驶飞速发展的时代,5.9GHz频段的C-V2X(蜂窝车联网)和5.8GHz频段的DSRC(专用短程通信)已成为车辆与环境交互的关键神经。然而,GHz频段内日趋复杂的电磁环境却为通信灵敏度与可靠性带来严峻挑战。传统噪声抑制元件在应对高频宽范围干扰时力不从心,高性能宽频噪声解决方案成为行业急需突破的技术瓶颈。村田制作所(Murata)以其深厚的材料技术积淀和创新设计,适时推出了革命性的片状铁氧体磁珠——BLM15VM系列,直击高频车联网通信的核心痛点。
据彭博社6月20日报道,微软计划于今年7月启动大规模组织结构调整,预计裁员数千人,主要集中在全球销售与客户服务部门。此举引发行业对科技巨头战略重心迁移的高度关注,尤其引人瞩目的是其裁员节省的资金流向——微软官方确认将在新财年向人工智能基础设施领域投入约800亿美元。
在AI服务器爆发式增长、新能源系统复杂度飙升的产业背景下,传统控制芯片正面临三重挑战:碳化硅/氮化镓器件的高频开关控制需求、功能安全标准升级、以及机器学习边缘部署的实时性要求。Microchip最新推出的dsPIC33AK512MPS512与dsPIC33AK512MC510数字信号控制器(DSC),通过78ps PWM分辨率与40Msps ADC采样率的核心突破,为高精度实时控制树立了新基准。
根据权威机构IDC最新发布的《全球智能家居设备季度追踪报告》,2025年第一季度全球智能扫地机器人市场迎来强劲开局,总交付量达到509.6万台,较去年同期增长11.9%,连续第二个季度实现超过20%的增长率。市场活力显著提升,展现出强劲复苏势头。
随着ADAS渗透率突破50%(据Yole 2023数据),车载传感器供电与数据传输架构面临革命性变革。传统双线分立设计(电源线+信号线)导致线束占整车重量超3%,且故障率居高不下。TDK株式会社推出的ADL8030VA系列PoC专用电感器,通过单元件高集成方案重构滤波电路,为智能驾驶系统提供空间与可靠性双重优化路径。