发布时间:2024-06-7 阅读量:1698 来源: 综合自网络 发布人: wenwei
【导读】寄生电容(parasitic capacitance),也称为杂散电容,是电路中电子元件之间或电路模块之间,由于相互靠近所形成的电容,寄生电容是寄生元件,多半是不可避免的,同时经常是设计时不希望得到的电容特性。寄生电容常常也会造成杂散振荡。
一、寄生电容对电路的影响
寄生电容对电路会产生多种影响,其中包括:
1. 信号失真
在高频电路中,寄生电容会引起信号传输的失真。它可以形成低通滤波器,导致高频信号被削弱或降低频率响应。
2. 交叉耦合
当多个导线或电子器件之间存在寄生电容时,它们之间的电荷和电压变化会相互干扰,导致信号交叉耦合。这可能导致信号串扰、噪声增加和系统性能下降。
3. 启动延迟
在开关电路或数字电路中,寄生电容会导致信号的传输延迟。当电路中存在大量的寄生电容时,信号的上升和下降时间会增加,从而影响电路的响应速度。
4. 稳定性问题
在放大器和振荡器等高频电路中,寄生电容可能引起电路的稳定性问题。它可以引起相移和幅度变化,导致系统产生自激振荡或失稳。
二、减小寄生电容影响的方案
1.使用电容滤波器
在电路中添加电容滤波器可以减小寄生电容的影响。电容滤波器将直流信号通过滤波器中的电容器进行滤波,从而使电路中的干扰信号得到有效的滤除。
2.降低电路噪声
减小电路中的噪声可以降低寄生电容的影响,因为噪声信号往往具有高频成分,这些高频信号会加重寄生电容的影响。可以通过优化电路设计或使用低噪声元器件实现。
3.采用屏蔽技术
在电路中添加屏蔽层或屏蔽材料可以有效减小寄生电容的影响。屏蔽层或屏蔽材料能够将电路中的电磁辐射或干扰信号隔离在屏蔽层或屏蔽材料之外,从而减小寄生电容的影响。
4.优化电路布局
电路的布局会对寄生电容的影响产生重要的影响,因此需要优化电路的布局。可以采用地线分离、信号线和电源线分开布置等方式来优化电路布局。
5.选择合适的元器件
选择合适的元器件可以减小寄生电容的影响。例如,选择高频响应更好的电容器可以减小寄生电容的影响。
6.采用差分信号传输
差分信号传输方式可以减小寄生电容的影响。在差分信号传输方式中,信号被分为两路传输,两路信号的电势相反,从而减小寄生电容的影响。
在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。
在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。
随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。
作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。
随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。