发布时间:2024-04-11 阅读量:3329 来源: 我爱方案网 作者: wenwei
【导读】随着新能源汽车技术的快速发展,终端应用渗透率正迅速提高,在可预见的未来,整个新能源汽车市场的规模将会持续扩大,迈向规模化、高质量发展阶段。充电桩作为新能源汽车产业链的重要一环,加快充电桩配套设施的建设和完善对于缓解补电焦虑,推动电动汽车更深层次的普及至关重要。为了适应用户快速、稳定、安全的充电需求,提升充电桩的功率等级和效率是其发展的主流方向。充电模块是新能源汽车直流充电设备的核心部件,它的性能直接影响直流充电设备的整体充电效率,同时关系到充电安全等问题。快包分析师总结了6条充电模块的技术要求,同时,针对充电模块的应用场景推荐上海贝岭的高压IGBT和MOSFET。
充电模块在直流充电桩中起到对输入交流电整流滤波、升压稳压(控制、转换)等作用,充电模块的功率和数量,决定了直流充电桩的输出功率。其核心技术在于电力电子功率变换电路、拓扑技术创新能力、嵌入式软件实时控制算法的可靠性、电路设计的安全性及大功率散热技术的结构设计能力和高功率密度的集成化能力。
直流充电桩系统框图(图源:上海贝岭)
直流充电模块的功率回路由AC/DC、DC/DC两部分组成。AC/DC部分连接电网侧,用于整流和功率因素校正;DC/DC部分输出可调直流电压,满足不同类型电池的充电需求。
典型的单向直流充电模块的拓扑结构如下图所示。AC/DC部分采用三相维也纳PFC,该拓扑可以有效降低功率器件电压应力,开关频率较高,有效降低磁性器件体积,提升系统的功率密度。DC/DC部分采用原边串联、副边交错并联的LLC拓扑,可以实现原边ZVS和副边的ZCS,降低系统损耗,提升充电效率。
直流充电模块典型拓扑结构(图源:上海贝岭)
随着V2G、V2X等技术的发展,直流充电桩需要实现能量的双向流动,助力新能源行业更高质量发展。典型的双向拓扑结构如下图所示,前后级均可使用1200V的功率器件。此应用中,高压MOSFET将会展现出优异的器件特性。
双向直流充电模块典型拓扑结构(图源:上海贝岭)
器件选型方案
针对直流充电桩领域,上海贝岭可提供完整的芯片选型解决方案,覆盖功率链和信号链等众多产品,产品型号完善、性能优异。包含IGBT、MOSFET等全系列产品,为高可靠直流充电模块设计提供助力。
(1)高压IGBT选型推荐
该系列IGBT采用先进的沟槽栅场截止型(T-FS)技术,具有低饱和电压、优化的开关性能和低栅极电荷QG的特点。适用于光伏、UPS、BOOST电路和高频开关电路应用场景。针对前级AC/DC部分推荐IGBT型号:BLG40T65FDK-F、BLG50T65FDKA-F、BLG60T65FDK-F、BLG75T65FDK-F。
优势特点
○ 快速切换
○ 正温度系数
○ 快恢复反并联二极管
○ RoHS产品
(2)高压MOSFET选型推荐
BLS65R041F是采用先进的超级结技术制成的硅N 沟道增强型 MOSFET,可降低导通损耗,提高开关性能。该晶体管适用于开关电源、高速开关和通用应用。
优势特点
○ 快速切换
○ 100%雪崩测试
○ 改进的 dv/dt 能力
○ RoHS 产品
BLC16N120是一种N沟道增强型平面MOSFET,采用革命性的半导体材料碳化硅,具有导通电阻低、电容和栅极电荷低、开关性能优越等优点。与硅相比,该器件可以为电力电子系统应用提供更高的效率、更快的操作频率和紧凑的系统尺寸。
优势特点
○ 革命性的半导体材料-碳化硅
○ 高阻塞电压,低导通电阻
○ 反向恢复率低的快速本征二极管
○ 开关损耗低
○ 100%雪崩测试
○ RoHS产品
即刻扫码!获取高压IGBT和MOFET应用方案
充电模块的技术要求
(1)宽输出电压
国网发布2017版《电动汽车充电设备供应商资质能力核实标准》指出直流充电机输出电压范围为200V~750V,恒功率电压区间至少覆盖400V~500V和600V~750V。随着电动汽车续航里程的增加,以及车主对缩减充电时间的愿望,大功率充电即350KW,1000V将成为必然的发展方向。
(2)宽输入电压
市场主流模块的输入电压范围为380±20%(305~456VAC),频率范围为45~65Hz。
(3)高频化
目前前级PFC的开关频率在40~60KHZ之间,后级移相全桥固定频率均在100KHZ以下,而全桥LLC的主谐振点频率也在100KHZ以下。随着单机模块功率的加大,而体积又不能成比例增大的情况下,不管是前级PFC还是后级的DC-DC,只有进一步增加开关频率才能实现增大功率密度。
(4)高效率
市场上所有厂家的模块,基本上峰值效率在95%到96%左右。随着98%超高效率技术和宽禁带器件在通信电源市场的成熟,从技术角度考虑,将目前的充电桩模块效率提升到98%是完全可能的。但从投资回报率考虑,效率为98%充电模块毫无市场竞争力,因此,只有等到碳化硅和氮化镓等器件平民化之后,充电桩超高效率的模块才能商业化。
(5)散热方式
目前市场上的模块以强制风冷的散热方式为主,和自然冷却相比,强制风冷散热更快、效率更高。但风机质量和寿命将会制约整机模块的寿命。
(6)功率密度
目前以15KW为主流模块的功率密度是2.0W/cm3。未来,为了满足不同场景充电的需求,尽可能做出超高功率密度的模块,这样可以使体积更紧凑,节省占地面积。
在5G通信、毫米波雷达及太空技术迅猛发展的背景下,高频电子元件的性能成为系统设计的关键瓶颈。威世科技(Vishay)近日宣布扩充其通过AEC-Q200认证的CHA薄膜电阻系列,新增0402封装尺寸产品(CHA0402),将高频工作范围扩展至50GHz,为汽车电子、航天通信及医疗设备提供突破性的高性能解决方案。
据多方供应链消息及知名行业分析师(如DSCC分析师Ross Young、爆料人“数码闲聊站”)最新披露,苹果计划对2025年发布的iPhone 17系列产品线进行显著调整,其中屏幕尺寸策略的改变将成为基础款机型的核心亮点,并预示着苹果对产品定位的重新思考。
在光伏逆变器高频开关、充电桩大功率动态响应及工业电机驱动的严苛场景中,电流测量的精度与可靠性直接关乎系统能效与安全。伴随新能源与智能制造产业升级,传统霍尔或开环传感器在温漂抑制、抗干扰能力及动态响应上的瓶颈日益凸显,亟需更高性能的集成化解决方案。纳芯微电子最新推出的NSDRV401闭环磁通门信号调节芯片,正是瞄准这一技术高地而生。
LG Display于6月27日宣布正式启动27英寸OLED显示器面板的全面量产计划,标志着高端显示器市场迎来重大技术革新。该面板基于革命性的第四代Primary RGB Tandem OLED技术,通过红、绿、蓝三原色四层独立堆叠结构,实现1500尼特峰值亮度与280Hz刷新率的卓越性能组合。
2025年7月,美光科技(纳斯达克:MU)正式发布专为OEM设计的2600 NVMe SSD。作为高性价比客户端存储解决方案,该产品首次搭载第九代QLC NAND闪存芯片(G9 QLC),结合独家自适应写入技术(Adaptive Write Technology™),在保持QLC成本优势的同时,实现了PCIe 4.0协议下的突破性性能。测试数据显示,其顺序写入速度较同类QLC/TLC产品提升63%,随机写入性能提升49%,为商用及消费级PC用户提供全新体验。