发布时间:2024-01-31 阅读量:3010 来源: 综合网络 发布人: bebop
Wi-Fi、蓝牙、NFC,相信大家对这三个词并不陌生,我们通过Wi-Fi上网,用蓝牙耳机听音乐,使用NFC支付……
总有人会问,这三种技术有何区别?哪种最好?还是三分天下?毕竟这么多年的发展并没有把哪个淘汰掉。今天来了解一下这三种技术各自的优势。
WIFI
Wi-Fi(Wireless Fidelity),又称作“移动热点”,是当今使用最广的一种无线网络传输技术。
Wi-Fi技术是把有线网络信号转换成无线信号,形成无线局域网,将局域网内的设备联网。比如我们通过一个无线路由器发射无线电波,那么在无线电波覆盖的有效区域内,都可以通过Wi-Fi联网,现在几乎所有的智能手机、平板电脑和笔记本电脑都配置了Wi-Fi模块。
Wi-Fi可传输大量信息,使用方便,使用距离较远(10 m~100 m左右),主要应用在SOHO(Small Office,Home Office)、家庭无线网络以及不方便安装电缆的建筑物或场所,例如机场、酒店、商场等,可以节省大量铺设电缆所需的成本。
近些年,由于智能设备的发展,Wi-Fi早已和我们的日常生活息息相关,甚至有人把Wi-Fi与水、空气并列为当代年轻人的生存三要素。Wi-Fi自上世纪90年代问世以来,得到了广泛的使用和发展,其标准在不断更新,传输速率也在不断提高。早期,Wi-Fi的工作频段为2.4 GHz和5 GHz,随着传输数据逐渐增加,在最新的Wi-Fi 7中,还增加了6 GHz的频段,这使得Wi-Fi有了更大的传输能力。
蓝牙
蓝牙(Bluetooth),诞生于1998年5月,是一种低功耗、低成本的近距离(一般10 m以内)无线通信技术。蓝牙能够有效地简化移动通信终端设备之间的通信,提升数据的传输效率。
蓝牙的实质是为固定设备或移动设备之间的通信环境建立通用的近距离无线接口,将通信技术与计算机技术结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信。
蓝牙的工作频段为2.4 GHz(2.4 GHz~2.48 GHz)。由于2.4 GHz频段为全世界公开通用的ISM(Industry 工业,Science 科学,Medicine 医学)频段,此频段非常拥挤。为了尽量减少与其他信号之间的相互干扰,蓝牙使用了跳频技术。跳频技术是把频带分成若干个跳频信道,在一次连接中,无线电收发器按一定的规律不断地从一个信道“跳”到另一个信道。只有收发双方是按这个规律进行通信,其他的信号不可能按同样的规律进行干扰,所以蓝牙的安全性和抗干扰能力强。如今,蓝牙不仅用于我们的日常生活(蓝牙耳机、蓝牙鼠标、蓝牙键盘等),还被广泛应用到了汽车、工业和医药等领域,如车载蓝牙娱乐系统,蓝牙监控数控机床,蓝牙监护病房等。多年来,蓝牙历经了多个版本,各个蓝牙版本有不同的传输速率要求,但是它们都工作在2.4 GHz频段,且保持与以前的版本的兼容性,这样可以确保不同版本的设备可以相互通信。
NFC
NFC(Near Field Communication,近场通信技术),是在非接触式射频识别(RFID,Radio Frequency Identification)技术的基础上,结合无线互连技术研发而成的一种新兴技术。
使用了NFC技术的设备(例如手机)可以在彼此靠近的情况下进行数据交换,多用于移动支付、电子票务、门禁和身份识别等场景。
NFC采用了双向的识别和连接,适合20 cm距离内的通信,工作频率在13.56 MHz,传输速率可为106 kbit/s、212 kbit/s、424 kbit/s和848 kbit/s。
NFC标准为了和非接触式智能卡兼容,规定了一种灵活的网关系统,具体分为三种工作模式:点对点通信模式、读写器模式和NFC卡模拟模式。点对点模式:两个NFC设备可以交换数据,例如两个具有NFC功能的手机之间可以利用NFC进行无线互联,实现数据交换。
读卡器模式:NFC设备可以作为非接触读写器使用,例如开启NFC功能的手机可以读写公交卡信息,进行余额充值等。
模拟卡片模式:将具有NFC功能的设备模拟成一张标签或非接触卡,例如支持NFC的手机可以作为门禁卡被读取。
NFC只支持短距离通信,目前没有Wi-Fi和蓝牙那样应用广泛,但是NFC的安全性极高,不需要提前配对,可以实现双向信息交互,而且操作简单,这些特点使得NFC终将会迎来属于它的时代,移动支付被认为是NFC最有发展前景的应用场景。
总的来说,这三种技术并不存在优劣之分,都有着各自的优势,到目前为止,也没有哪种技术能够集高传输速率、大传输距离、高安全性、低功耗和低成本于一身。我们根据不同的应用场景选择适合的技术,比如通过Wi-Fi传输大量的数据,用蓝牙连接各种设备,用NFC进行移动支付和身份识别
国际半导体产业协会(SEMI)最新报告指出,生成式AI需求的爆发正推动全球芯片制造产能加速扩张。预计至2028年,全球12英寸晶圆月产能将达1,110万片,2024-2028年复合增长率达7%。其中,7nm及以下先进制程产能增速尤为显著,将从2024年的每月85万片增至2028年的140万片,年复合增长率14%(行业平均的2倍),占全球总产能比例提升至12.6%。
据供应链消息确认,高通新一代旗舰芯片骁龙8 Elite Gen 2(代号SM8850)将首次采用双轨代工策略:台积电负责基于N3P(3nm增强版)工艺的通用版本,供应主流安卓厂商;而三星则承接其2nm工艺(SF2)专属版本,专供2026年三星Galaxy S26系列旗舰机。此举标志着高通打破台积电独家代工依赖,三星先进制程首次打入头部客户供应链。
在AI算力需求爆发性增长的浪潮下,存储巨头美光科技交出超预期答卷。其2025财年第三季度营收达93亿美元,创历史新高,其中高带宽内存(HBM)业务以环比50%的增速成为核心引擎。凭借全球首款12层堆叠HBM3E的量产突破,美光不仅获得AMD、英伟达等头部客户订单,更计划在2025年末将HBM市占率提升至24%,直逼行业双寡头。随着下一代HBM4基于1β制程的性能优势验证完成,一场由技术迭代驱动的存储市场格局重构已然开启。
随着汽车智能化升级,高保真低延迟高集成度的音频系统成为智能座舱的核心需求。意法半导体(ST)推出的HFDA80D和HFDA90D车规级D类音频功放,以2MHz高频开关技术数字输入接口及先进诊断功能,为车载音频设计带来突破性解决方案。
随着汽车智能化电动化进程加速,自动驾驶(AD)和高级驾驶辅助系统(ADAS)等关键技术模块已成为现代车辆标配。这些系统依赖于大量高性能电子控制单元(ECU)和传感器,导致车内电子元件数量激增。作为电路稳压滤波的核心元件,多层片式陶瓷电容器(MLCC)的需求随之水涨船高,尤其是在集成电路(IC)周边,对大容量电容的需求尤为迫切。然而,有限的电路板空间与日益增长的元件数量及性能要求形成了尖锐矛盾,元件的高性能化与小型化成为行业亟待攻克的关键难题。