发布时间:2023-12-19 阅读量:1743 来源: 综合自网络 发布人: wenwei
【导读】器件的静态电流 (IQ) 对于连续血糖监测器 (CGM) 等低功耗节能终端设备而言,是一个重要参数。集成电路在轻负载或空载条件下消耗的电流会显著影响待机模式下的功率损失,以及系统的总运行时间。为了提升效率和延长电池使用寿命,人们面临着降低待机模式功率损失、限制电流尖峰和减小导通时间脉冲期间占空比的诸多挑战。具有低 IQ 的升压转换器可帮助降低电池的总功率损失。
由电池供电的负载实际上并不是常开型负载,而是脉宽调制 (PWM) 负载,这意味着负载包含两个时间段:tPWM 和 tStandby,如图 1 所示。尽管 tStandby 占总负载周期(在图 1 中显示为 T)的 99.9%,但它对提升效率(尤其是轻负载效率)仍非常重要。
图 1:电池系统负载情况
为了提升效率和延长电池使用寿命,人们面临着降低待机模式功率损失、限制电流尖峰和减小导通时间脉冲期间占空比的诸多挑战。具有低 IQ 的升压转换器可帮助降低电池的总功率损失。
选择低 IQ 升压转换器来提升总效率
CGM 展示了为何最大程度降低 IQ 对于延长电池使用寿命是重要的。图 2 展示了 CGM 电源块,其中包括一个用于读取血糖浓度的传感器,一个用于捕获血糖读数的发送器和一个用于通信和显示的无线接收器。该发送器由一个纽扣电池、升压转换器和模拟前端组成(图 3),该模拟前端消耗大部分电能。
图 2:CGM 的电源架构
图 3:CGM 发送器的电源架构
图 4 展示了模拟前端的负载电流。如您所见,发送器在 99% 的时间处于待机模式。
图 4:CGM 发送器中电流消耗随时间的变化
公式 1 计算了电池在一个负载周期中提供的总功率为:
降低 IQ 可直接提升待机模式下的效率。
德州仪器的 TPS61299 升压转换器仅从 VOUT 中消耗 95nA 的 IQ,因此可在 CGM 的以下典型待机条件下将效率提升 39%:VIN = 3.0V,VOUT = 3.3V 且待机 IOUT = 10µA(图 5)。在每个 288s 的负载周期中,30mA 的导通时间脉冲负载持续 600ms,相当于每天节省多达 2.53W 的功率。提升待机模式下的效率最终可延长 20% 的电池使用寿命。
图 5:TPS61299 和 600nA IQ 器件的效率曲线
限制电池的放电电流
尽管高能量密度、低放电纽扣电池极其常见,但其主要缺点是具有高等效串联电阻 (ESR) 和有限的电流能力。PWM 负载应用的占空比小,高电流脉冲会产生远高于放电电流的高浪涌电流尖峰,这对电池容量和电池使用寿命都会产生不良影响,尤其是在使用超级电容器时。同样,ESR 会随着电池老化而增大,由电流尖峰导致的功率损失也会相应增加。
电池容量与放电电流成反比,电池使用寿命与容量具有线性关系,如图 6 所示。将放电电流从 500mA 降至 100mA 可将电池使用寿命增加一倍。
TPS61299 升压转换器系列提供从 5mA 到 1.5A 的输入电流限值,可精确限制导通时间脉冲期间的放电电流,帮助延长电池使用寿命。
图 6:电池使用寿命与放电电流
选择具有快速瞬态响应时间的器件
通过减小负载的导通时间脉冲宽度来降低总功率损失,也能延长电池的总使用寿命。
图 7 展示了智能手表 LED 的逐周期负载情况。PWM 负载包含两个阶段:瞬态时间 (ttran) 和采样时间 (tsample)。ttran 测量升压转换器在发生负载电流或电源电压突变后快速稳定至目标输出电压的时间。tsample 是光电二极管稳定后的恒定值。
缩短 ttran 会大大缩短 PWM 时间 (tPWM),反过来增加消隐时间 (tBLANK),并使 IQ 运行状态时间更长。假设可以将 ttran 从 100µs 降至 10µs,且 tsample 为 10µs、周期时间为 250µs,则可以将 tBLANK 从 140µs 延长至 230µs,如图 8 所示。
图 7:传统 PWM 负载
图 8:具有快速瞬态性能的 PWM 负载
在 tBLANK 和缩短的 ttran 时间内,通过维持低 IQ 来实现高效率总是步履维艰。低 IQ 器件的响应时间总是很长,因为在 IQ 非常低的情况下为内部寄生电容充电是具有挑战性的。
然而,TPS61299 可实现更快的瞬态响应时间,且带宽更宽。例如,在 3.6V 输入和 5V 输出条件下,输出电流从 0mA 升高至 200mA 的典型稳定时间是 8µs,如图 9 所示。
图 9:TPS61299 的瞬态波形
结语
综上所诉,设计人员可以通过选择低 IQ 升压转换器来提升总效率,通过减小负载的导通时间脉冲宽度来降低总功率损失,通过限制导通时间脉冲期间的放电电流,帮助延长电池使用寿命。
日本半导体制造设备协会(SEAJ)于2025年6月24日正式发布其最新统计报告,详细介绍了2025年5月及1-5月日本半导体制造设备的销售表现。这些数据反映了全球半导体产业链的强劲需求,为行业提供了关键的市场洞察。整体来看,日本制造设备销售额持续展现出卓越的增长态势,多项指标刷新历史纪录,凸显了日本在该领域的核心竞争力和市场主导地位。
全球数据中心处理器市场长期被x86架构垄断,国产处理器面临指令集授权与生态建设的双重壁垒。2025年6月,龙芯中科发布基于100%自研指令集(LoongArch)的3C6000系列服务器处理器,首次在核心性能参数上对标英特尔2021年推出的第三代至强可扩展处理器,标志着国产高端芯片实现从技术攻关到市场应用的跨越式突破。
2024年全球车载无线充电系统销量同比增长14%,普及率首次突破50%大关,达53%;2025年Q1进一步攀升至56%。美国以87%的普及率领跑,韩国及北美市场紧随其后。中国欧洲和拉丁美洲需求强劲,其中中国销量同比激增24%,显著拉动全球增长。
全球半导体技术巨头英飞凌科技股份公司(FSE:IFX / OTCQX:IFNNY)始终致力于推动汽车电子领域的创新。随着新能源汽车和智能网联汽车的快速发展,底盘系统的安全性、精度和可靠性成为核心挑战。例如,电动助力转向和悬挂系统亟需更高性能的传感方案。在此背景下,英飞凌近期推出的新一代电感式传感器产品线正式亮相,旨在为汽车底盘应用提供颠覆性解决方案。这不仅标志着公司在前沿电子组件的深度布局,更呼应了行业对高可靠性传感技术的迫切需求。
2025年Q1,英伟达营收达440亿美元(同比+69%),数据中心业务贡献390亿美元(同比+73%),占收入比近90%。Blackwell架构芯片创下公司史上最快增速,推动计算收入增长73%。汽车与机器人部门收入5.67亿美元(同比+72%),自动驾驶技术成为核心驱动力。尽管受美国对华H20芯片出口管制影响(损失45亿美元库存),英伟达仍维持增长韧性,市值一度突破3.75万亿美元,登顶全球上市公司。