提高热电偶测温电路性能的设计小妙招

发布时间:2023-11-23 阅读量:85288 来源: 综合自网络 发布人: wenwei

【导读】在工业生产过程中,温度是需要测量和控制的重要参数之一。在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种无源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。


热电偶测温易受冷端温度的干扰,所以需在PCB布板和结构上合理的设计才能消除干扰。热电偶的物理特性决定了,它和其它的传感器测温不一样,热电偶只能检测温度差,是需要冷端的温度作为参考的,冷端温度的检测是否可靠,直接影响热电偶测温的准确性和稳定性。那么,这个冷端的设计就显得尤为重要。所以,一个高性能的热电偶测温,不是只要有一个好的电路方案就够了。


如何保证冷端温度精度


热电偶线与测量电路连接的端为热电偶的冷端(参比端),冷端的温度作为参考温度,对其检测的精准性直接影响了整个测温方案的精度。常规冷端温度的检测一般采用铂电阻、NTC、数字测温芯片等,冷端温度的检测越接近真实的冷端温度,热电偶整体的测温精度也就越高。那么,在相同的冷端检测方案下,如何让冷端的检测温度接近真实冷端温度呢?方法其实不难,通过调整PCB布局便可轻易达到。


PCB布板要点:


●   冷端温度检测传感器要靠近热电偶冷端的位置放置,在电气耐压间距允许的情况下,越近越好;

●   冷端温度检测传感器和冷端的连接点处要尽可能的增加铺铜面积,不仅可以将真实冷端温度与数字测试芯片检测的温度拉到同一水平,还能降低因环境温度变化带来的干扰;

●   热电偶冷端连接处的铺铜区与检测电路的铺铜区要完全隔离开,避免检测电路产生的热量通过铺铜传递到冷端。


如何保持冷端温度稳定


在热电偶温度采集过程中,环境温度稳定也非常重要。由于冷端传感器并不是直接通过电气连接的方式来检测真实冷端的温度,当真实冷端处在温度分布不均的空间环境下,冷端传感器检测的温度与冷端的实际温度之间是有较大偏差的,这就导致热电偶产生了极大的测温偏差,在环境相对恶劣的情况下甚至会产生2℃以上的测温偏差,如带有散热风扇的机柜,其风扇产生分布不均的风速严重影响冷端温度的检测。那么我们如何保持环境温度相对稳定呢?


在热电偶冷端位置设计一个金属结构件,以降低环境的干扰,同时还可将多通道的冷端温度拉到同一温度线。


结构件设计要点:


●   热电偶测温电路板的两面增加类似于保护罩的结构件,选用常规塑胶的即可,对精度要求比较高的,可以选用导热率高的金属结构件,实际测试塑胶件和金属件对精度影响差别不大;

●   结构件要具有一定的气密性,空气中的气流不能轻易透过电路板,尤其是冷端;

●   结构件是金属类的:需要在结构件与冷端之间增加导热率高的绝缘材料;

●   结构件是塑胶类的:结构件与冷端之间需要留有一定空间,不要与之接触。


综上所述,想要提高热电偶测温性能,除了有一个好的电路方案,还需要合理的PCB布板和结构。

相关资讯
时钟芯片RTC原理介绍、晶振选型、应用场景

【小知识】时钟芯片一种高性能、低功耗、带RAM的实时时钟电路,英文名称:Real-time Clock/Calendar Chip(简称:RTC),可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能。采用IIC通信接口。

晶振起振检测四大核心方法:示波器、万用表、频率计实操指南

晶振作为电子设备的"心跳发生器",其起振状态直接决定系统能否正常运行。本文深度解析四种检测方法的实战要点:示波器法需规避探头电容引发的停振风险,万用表电压法需警惕芯片故障导致的误判,频率计通过波形特征精准锁定起振状态,而听声辨振实为认知误区——人耳可闻的异常声响反而暴露晶振缺陷。随着5G/新能源产业爆发式增长,国产晶振厂商正加速技术攻坚,保障起振检测的可靠性已成为行业刚需。

可编程晶振怎么改变频率

可编程晶振改变频率的核心原理是:通过内部集成的锁相环(PLL)和数字分频/倍频电路,对基础石英晶体产生的固定频率进行精密的数学运算(分频、倍频、分数分频),最终输出一个用户通过数字接口(如I²C、SPI)编程设定的目标频率。

巴克豪森准则:振荡器起振的相位与增益平衡艺术

晶振是电路中可以提供高度稳定时钟信号的元器件。通常一个系统共用一个晶振,便于各部分保持同步,一起“干大事”。比如在我们常用的计算机系统中,晶振可比喻为各板卡的“心跳”发生器,如果主卡的“心跳”出现问题,必定会使其他各电路出现故障。人体的心跳搏动,离不开血液。晶振也是一样,离不开电流。

从XTAL到OCXO:解析五大晶振类型及其技术皇冠

晶振自身产生时钟信号,为各种微处理芯片作时钟参考,晶振相当于这些微处理芯片的心脏,没有晶振,这些微处理芯片将无法工作。晶振的作用就是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。晶振主要运用于单片机、DSP、ARM、PowerPC、CPLD/FPGA等CPU,以及PCI接口电路、CAN接口电路等通讯接口电路。