聊聊身边的嵌入式,9块9包邮的电动牙刷是如何工作的?

发布时间:2023-04-23 阅读量:23608 来源: TopSemic嵌入式 发布人: Doris

很多人都在使用电动牙刷,它的品类繁多、价格高低不等,因为我家里的电动牙刷还没有坏,暂时忍住了拆解它的冲动。受好奇心驱使,特意花费20.8元在拼多多上买了两款最便宜的电动牙刷来拆解分析。

1.png


8.9元的这个就一个按键,按一下工作,再按一下停止工作。

2.png

内部构造如下:

3.png

简单到出乎我的意料,就是电池直接给电机供电,按键控制供电导通和断开,从而控制电机是否旋转。

4.png

但是请注意观察这个电机,它的转动轴上有个小圆块,并且转动轴不是位于小圆块的正中心,而是在靠边的地方。

5.png

这样人为地改变电机的装配重心,是为了得到所需要的振动功能。当电机旋转时,因为重心偏离转轴,就会引起自身的振动,从而带动和电机接触的牙刷外壳的振动,并最终传递到牙刷头。和这个工作类似的是手机的振动功能,它是把手机内部电机的振动传递到手机外壳,达到传递信息的目的。

再来看另外一款,这一款贵了3块钱,功能自然也多了点,有五档调节,分别为清洁、轻柔、美白、护眼、抛光,还支持充电功能。不过电机振动的原理是一样的,下图可以看到它的转轴上放有偏心块。MCU的丝印被去除了,猜测是一个8位机。

6.png

原理框图如下:

7.png

不同的档位是靠MCU产生不同的PWM波形,来控制电机的不同方式的转动。上图中续流二极管的作用是为了避免在关断的瞬间产生大的尖脉冲电压(电机可以简单看作是一个电感,电流通过电感会积蓄能力,突然断开时,就像高速运动的重物突然撞墙一样。或者根据公式u=L*(di/dt) ,关断的瞬间di/dt很大,所以感生电压u很大)。有了续流二极管,就可以使电机关断时电流缓慢变小,避免产生大电压击穿MOS管。

这个MCU只有8个管脚,除去VDD、GND、按键IO和控制电机的IO,还剩下4个,但是要控制5个LED,这就涉及到一个用少量IO控制多个LED灯的问题。可以通过如下电路来实现:

8.png

再来说个题外话,很多不良厂家宣称超声波电动牙刷,大家知道超声波的频率是20000hz以上,而电动牙刷所产生的振动频率最多也就每分钟几万次,这足足相差几十倍,所以千万不要被忽悠了。

当然市面上的电动牙刷的控制方式远不止这两种,电机的种类也不一样,另外充电方式也有不同,有的还具有蓝牙连接功能。总之一份价钱一份货,以后有机会再继续介绍。

来源: TopSemic嵌入式

相关资讯
车规晶振选型指南:3分钟破解ADAS时钟稳定性难题

在汽车电子智能化、网联化与电动化深度融合的浪潮中,车载时钟系统的精度与可靠性正成为决定整车性能的核心命脉。作为电子架构的"精准心跳之源",车规级晶振的选型直接影响ADAS感知、实时通信、动力控制等关键功能的稳定性。面对严苛路况、极端温差及十年以上的生命周期挑战,工程师亟需兼具高稳定性与强抗干扰能力的时钟解决方案——小扬科技将聚焦车规级晶体/晶振核心参数,3分钟助您精准锁定最优型号。

破局图像传感器选型难题:成像性能、系统兼容与工具支持的协同​

在技术创新的浪潮中,图像传感器的选型是设计与开发各类设备(涵盖专业与家庭安防系统、机器人、条码扫描仪、工厂自动化、设备检测、汽车等)过程中的关键环节。选择最适配的图像传感器需要对众多标准进行复杂的综合评估,每个标准都直接影响最终产品的性能和功能。从光学格式(Optical Format)和动态范围(Dynamic Range),到色彩滤波阵列(CFA)、像素类型、功耗及特性集成,这些考量因素多样且相互交织、错综复杂。

破解时钟难题:5大场景下压控晶振选型黄金法则(附参数对照表)

压控晶振(VCXO)作为频率调控的核心器件,已从基础时钟源升级为智能系统的"频率舵手"。通过变容二极管与石英晶体的精密耦合,实现电压-频率的线性转换,其相位噪声控制突破-160dBc/Hz@1kHz,抖动进入亚纳秒时代(0.15ps)。在5G-A/6G预研、224G光通信及自动驾驶多传感器同步场景中,VCXO正经历微型化(2016封装)、多协议兼容(LVDS/HCSL/CML集成)及温漂补偿算法的三重技术迭代。

核心差异剖析:晶振 vs. 实时时钟芯片(RTC) - 脉冲源与时间管理者的角色划分

在电子设备的精密计时体系中,晶体振荡器与实时时钟芯片如同时间系统的"心脏"与"大脑":晶振通过石英晶体的压电效应产生基础频率脉冲,为系统注入精准的"生命节拍";而实时时钟芯片则承担时序调度中枢的角色,将原始频率转化为可追踪的年月日时分秒,并实现闹钟、断电计时等高级功能。二者协同构建现代电子设备的"时间维度"。

无人机的“眼”与“脑”:解密自主导航与感知核心技术

无人机已不再是简单的飞行器,而是集成了尖端感知与决策能力的空中智能载体。其核心系统——特别是自主导航与感知技术——是实现其在测绘、巡检、农业、物流、安防等多个领域高效、精准作业的关键。本文将深入剖析无人机如何通过这些核心技术“看见”、“思考”并“规划”路径,实现真正意义上的自主飞行能力。