汽车芯片的设计和制造有何独特之处?

发布时间:2022-11-21 阅读量:1233 来源: 我爱方案网整理 发布人: Aurora

到现在几乎每个人都知道汽车行业仍然短缺半导体芯片,尽管情况似乎正在改善。虽然电动汽车使用更多半导体几乎是理所当然的,但为什么汽油驱动的内燃机 (ICE) 汽车使用这么多芯片?这些芯片是否具有在供不应求时更难提高制造能力的属性?这就是本文将尝试解释的内容。    

 

为什么汽车用的半导体芯片那么多?    

 

纽约时报说现代汽车可以使用多达 3,000 个半导体芯片,而另一个消息来源说超过 1000 个。我敢肯定这取决于你在计算什么,但就在 1960 年代,汽车中的电子设备还非常局限于汽车收音机. 不久前几乎完全是机械的产品怎么会有这么多芯片?答案有几个部分,它反映了芯片在广泛的消费和工业产品中的使用普遍增加:性能、成本以及功能从硬件到软件的迁移。    

 

对于汽车而言,1973 年石油危机后对提高燃油经济性的大力推动导致电子设备在发动机控制中的使用迅速增加。虽然电子点火装置在 1960 年代后期开始出现,但使用微控制器芯片进行发动机控制证明了数字方法的可能性。使用传感器监测温度、曲轴位置、空气质量流量、节气门位置和废气中的氧气浓度等信息,汽车制造商能够显着改善其车辆的燃油经济性和排放状况。控制器芯片进行即时计算以优化发动机性能,这是机械传感器和联动装置无法做到的。

    

汽车芯片的设计和制造有何独特之处

 

这凸显了半导体芯片使用增长背后的一大推动力:使用软件实现许多仅靠硬件可能难以(甚至不可能)实现的功能。计算向燃油喷射器供油的最佳速率可能涉及实时求解复杂的方程式或查找表格中的数字。使用计算机芯片和一些软件很容易(而且成本低廉)。这也是我们如何获得更复杂的自动变速器,使用软件来实现复杂的控制方案,例如下坡时降档。连接到速度传感器的控制器芯片将信号发送到控制变速箱螺线管的半导体电源开关。这凸显了功率半导体、在数字控制下切换功率的设备的作用,在整个车辆中广泛使用。如果您将这些设备也算作“芯片”(正如纽约时报可能所做的那样),那么车辆中的半导体设备数量就会增加。    

 

汽车级半导体芯片及其控制的相关开关和设备比机械芯片更可靠。我记得在我年轻很多的时候,一位朋友向我展示了他们 1968 年 Mercury Cougar 后备箱中的顺序转向信号灯。红色转向灯显然连接到一个“听起来像洗衣机”的小型电机驱动旋转开关。一旦触点磨损或腐蚀,那东西就一团糟。转向半导体开关和一个简单的定时器电路使这样的机制更加可靠。    

 

再举个例子,几年前,我租了一辆大众甲壳虫,当我跳进车里关上车门时,驾驶座的车窗在车门即将关上时摇下了一点,然后又弹了回来。这平衡了乘客舱内的压力,所以你的耳朵不会爆裂。纯机械地实现这种功能确实具有挑战性,但使用微芯片可能只需要几行代码。车辆的车身电子设备——电动车窗、门锁、侧视镜通常连接到车身控制模块 (BCM) 芯片。BCM 还与整个汽车的其他电子单元进行通信,例如仪表盘和许多传感器。当然,信息娱乐系统使用大量芯片。    

 

关于用软件而不是硬件实现事物的另一件事:您可以在发布产品后对其进行修改。我们一直在我们的计算机和电话软件中看到这一点——似乎每十次 Zoom 会议我都会得到一个新的软件更新。但是硬件?特斯拉已经展示了“无线更新”的强大功能,它可以修改汽车的功能。我记得 GE Aviation 还进行了软件修复,以暂时解决波音公司使用的 GEnx 涡轮风扇发动机的高空结冰问题。用软件?哇,令人印象深刻!    

 

汽车芯片的设计和制造有何独特之处?    

 

汽车芯片有几个突出的特点。    

 

首先是它们必须在广泛的极端温度条件下长时间运行,同时承受大量冲击和振动。汽车制造商预计其使用寿命为 15 年,并且在此期间可以容忍十亿分之零的故障率。他们还希望更换零件可以使用 30 年。大多数消费电子设备(如您的手机)的故障率以百万分之几计,五年后将被视为过时。如果您的 PC 遇到错误,请重新启动并再试一次。如果你的发动机控制器突然失灵,你不会把车停在路边重新启动(尽管我听说电动汽车的信息娱乐系统会发生类似的事情)。    

 

汽车电子委员会(由底特律三巨头建立)维护着一系列芯片资格标准。对于工作温度,它定义了 0、12 3 级工作范围,其中 1 级涵盖 -40ºC +125ºC2 级涵盖 -40ºC +105ºC。顺便说一句,它的上限比沸水的温度还要高。这是一个比大多数消费类芯片所见过的更具挑战性的范围。芯片需要可靠,因此必须对其进行设计和测试,以在极端条件下具有足够的使用寿命。    

 

第二个要求是它们的设计必须考虑到安全性。ISO 26262——功能安全标准涵盖了其中的很多内容,它涵盖了一系列内容,从它们的设计方式到如何处理故障。    

 

最后,半导体工厂的芯片制造工艺必须“合格”,这通常需要六个月的时间。晶圆厂还需要针对高温设备模型、更厚的互连和其他增强可靠性的东西修改他们的工艺设计套件。之后,芯片必须经过广泛测试才能安装到车辆中。这意味着在高温和恶劣条件下进行加速寿命测试,以模拟多年的服务。主流汽车制造商需要长达 3-5 年的时间来设计、测试和验证新芯片。    

 

正如我前面指出,许多汽车微控制器采用90纳米技术,并且已经难以增加容量。近两年的短缺促使一些汽车芯片供应商转向65/55nm节点,有的甚至跃升至40nm。但 DigiTimes表示,采用 40 纳米工艺制造的新芯片最多需要五年时间才能通过验证流程并投入新车,这意味着现有技术将在未来一段时间内继续使用。这就是为什么汽车芯片短缺问题的缓解时间比大多数人都长。

 

关于我爱方案网

 

我爱方案网是一个电子方案开发供应链平台,提供从找方案到研发采购的全链条服务。找方案,上我爱方案网!在方案超市找到合适的方案就可以直接买,没有找到就到快包定制开发。我爱方案网积累了一大批方案商和企业开发资源,能提供标准的模块和核心板以及定制开发服务,按要求交付PCBA、整机产品、软件或IoT系统。更多信息,敬请访问http://www.52solution.com


相关资讯
半导体产业升级战:三星电子新一代1c DRAM量产布局解析

在全球半导体产业加速迭代的背景下,三星电子日前披露了其第六代10纳米级DRAM(1c DRAM)的产能规划方案。根据产业研究机构TechInsights于2023年8月22日发布的行业简报,这家韩国科技巨头正在同步推进华城厂区和平泽P4基地的设备升级工作,预计将于2023年第四季度形成规模化量产能力。这项技术的突破不仅标志着存储芯片制程进入新纪元,更将直接影响下一代高带宽存储器(HBM4)的市场格局。

蓝牙信道探测技术落地:MOKO联手Nordic破解室内定位三大痛点

全球领先的物联网设备制造商MOKO SMART近期推出基于Nordic Semiconductor新一代nRF54L15 SoC的L03蓝牙6.0信标,标志着低功耗蓝牙(BLE)定位技术进入高精度、长续航的新阶段。该方案集成蓝牙信道探测(Channel Sounding)、多协议兼容性与超低功耗设计,覆盖室内外复杂场景,定位误差率较传统方案降低60%以上,同时续航能力突破10年,为智慧城市、工业4.0等场景提供基础设施支持。

财报季再现黑天鹅!ADI营收超预期为何股价暴跌5%?

半导体行业风向标企业亚德诺(ADI)最新财报引发市场深度博弈。尽管公司第三财季营收预期上修至27.5亿美元,显著超出市场共识,但受关税政策驱动的汽车电子产品需求透支风险显露,致使股价单日重挫5%。这一背离现象揭示了当前半导体产业面临的复杂生态:在供应链重构与政策扰动交织下,短期业绩爆发与长期可持续增长之间的矛盾日益凸显。

全球可穿戴腕带市场首季激增13%,生态服务成决胜关键

根据国际权威市场研究机构Canalys于5月23日发布的调研报告,2025年第一季度全球可穿戴腕带设备市场呈现显著增长态势,总出货量达到4660万台,较去年同期增长13%。这一数据表明,消费者对健康监测、运动管理及智能互联设备的需求持续升温,行业竞争格局亦同步加速重构。

RP2350 vs STM32H7:性能翻倍,成本减半的MCU革新之战

2025年5月23日,全球领先的半导体与电子元器件代理商贸泽电子(Mouser Electronics)宣布,正式开售Raspberry Pi新一代RP2350微控制器。作为RP2040的迭代升级产品,RP2350凭借双核异构架构(Arm Cortex-M33 + RISC-V)、硬件级安全防护及工业级性价比,重新定义了中高端嵌入式开发场景的技术边界。该芯片通过多架构动态切换、可编程I/O扩展及4MB片上存储等创新设计,解决了传统微控制器在实时响应能力、跨生态兼容性与安全成本矛盾上的核心痛点,为工业自动化、消费电子及边缘AI设备提供了更具竞争力的底层硬件方案。