如何采用适当的补偿和阻尼技术实现AEF 的稳定性和出色性能

发布时间:2022-09-30 阅读量:1040 来源: 我爱方案网整理 发布人: Aurora

补偿和阻尼对于实现良好的 AEF 性能至关重要。本文讨论的方法都可以通过 LM25149 中集成的 AEF 轻松实现。通过采用适当的补偿和阻尼,AEF 可以实现显著的降噪效果。电力电子设计人员应该利用 AEF 来实现更高的功率密度、更高的效率和更低的成本。大多数 AEF 使用基于运算放大器的有源电路来检测噪声并注入适当的消除信号以降低 EMI,例如 LM25149-Q1 中集成的 AEF

 

为了使用这种 AEF 实现出色性能,运算放大器电路需要保持稳定且运算放大器应处于非饱和状态。否则,AEF 的性能会更差,甚至可能会在系统中注入额外的噪声。本文将探讨如何采用适当的补偿和阻尼技术实现AEF 的稳定性和出色性能。  

    

如何采用适当的补偿和阻尼技术实现AEF 的稳定性和出色性能

 

AEF 补偿   

 

图 1(a) 显示了一个无补偿的 AEF。在图 1 中,VS 是噪声源,ZS是内部阻抗,ZL 是线路阻抗稳定网络或电源的阻抗,Cin 是电源转换器的输入电容器,L 是差模电感器,Csense Cinj是感应电容器和注入电容器,RDC_fb Op_amp 提供直流反馈,Cpara 是电源布线和接地之间的寄生电容。   

 

作为一个基于运算放大器的反馈电路,图 1(a) 中的 AEF 会变得不稳定,进而导致运算放大器饱和。在这种情况下,AEF 的性能会受到显著影响,并且 AEF 可能会消耗更多功率并在系统中注入额外的噪声。由于运算放大器的负载网络很复杂,图 1a 中的 AEF 在低频和高频下都会不稳定。   

 

在低频(例如在 10 kHz 与 50 kHz 之间)下,环路增益的相位会变为正 180 度,系统会变得不稳定,造成这种问题的主要原因是 Cinj L 以及 Csen RDC_fb 形成了分压器。低频补偿的一种方法是添加 Rcomp Ccomp RDC_fb并联,如图 1(b) 所示。Ccomp 通过使反馈网络在低频下具有容性来进行低频补偿。Rcomp 用于确保 AEF 的性能。此外,转换器的输入端通常用电解电容器来存储能量并确保转换器稳定。电解电容器的等效串联电阻 (ESR) 也有助于提高低频稳定性。 

    

无补偿的 AEF (a) ;有补偿的 AEF (b)

 

图 1. 无补偿的 AEF (a) ;有补偿的 AEF (b) 。   

 

在高频下,运算放大器和 Cpara 的输出阻抗会产生一个极点,造成环路增益的相位滞后。此外,运算放大器通常具有低频极点。因此,环路增益在高频下将具有两个极点且其相位接近负 180°,这会导致在高频下不稳定。Rcomp1 Ccomp1 (图 1(b) 中)用于高频补偿,大小为 100 nF 0.5Ω。Rcomp1 Ccomp1 可以增加高频下环路增益的相位,使系统具有足够的相位裕度来保证高频稳定性。在某些应用中,高频陶瓷电容器(例如 10 nF 100 nF)对于高频噪声过滤或对于保护电路(例如用于反向保护的智能二极管)而言是必不可少的。在此类情况下,有几种方法可以保持高频稳定性:   

 

   在检测/注入节点和高频陶瓷电容器之间插入铁氧体磁珠以将它们解耦。  

 

   添加与高频电容器串联的小电阻器以进行补偿。  

 

   将高频电容器放置在远离 AEF 的位置,因为陶瓷电容   

 

器和印刷电路板布线的 ESR 和等效串联电感 (ESL) 也有助于提高高频稳定性。  

 

总体而言,必须确保检测/注入节点对地的阻抗不受高频(10 MHz 50 MHz)电容控制。   

 

AEF 阻尼   

 

由于热变化或开关抖动,电源转换器可能会在低于开关频率的频率下产生噪声(在本文中被称为低频干扰)。对于图 1(b) 中的 AEF,方程式 1 将其等效阻抗表示为: 

     

如何采用适当的补偿和阻尼技术实现AEF 的稳定性和出色性能

 

其中,Zop 和 Gop_amp 是输出阻抗和从检测节点到运算放大器输出端的电压增益,而 ZC_inj 是注入电容器的阻抗。   

 

根据方程式 1,图 1(b) 中的 AEF 的等效阻抗在低频下具有容性。因此,AEF 会在低频(例如在 10 kHz 100 kHz之间)下与差模电感器 L 发生谐振。考虑到这种谐振,低频干扰会使运算放大器输出电压和输出电流较大。由于运算放大器的输出摆幅和输出电流能力有限,运算放大器会进入非线性区域甚至达到饱和状态,这可能会影响 AEF 性能并导致 AEF 向系统中注入额外的噪声。   

 

处理这一问题需要抑制谐振。图 2 显示的两种阻尼方法使AEF 在谐振频率下具有较小的电容。在图 2(a) 中,阻尼电阻器 Rdamp 被插入到注入路径中。这样,Rdamp 越大,谐振阻尼越佳。然而,插入阻尼网络后,方程式 2 AEF 的等效阻抗表示为:

      

如何采用适当的补偿和阻尼技术实现AEF 的稳定性和出色性能

 

其中,Zdamp 是阻尼网络的阻抗。   

 

较大的 Rdamp 会增加 Zeq_AEF ,从而影响 AEF 的性能。所以这种阻尼方法主要适用于高频开关转换器,比如 2 MHz的开关转换器。为了有效抑制谐振,品质因数应在 1 左右或以下。若要使品质因数接近 1,请在计算 Rdamp时采用方程式 3:      

 

如何采用适当的补偿和阻尼技术实现AEF 的稳定性和出色性能

 

为了提高图 2(a) 所示的 AEF 的性能,请将电容器 Cdamp与阻尼电阻器 Rdamp 并联,如图 2(b) 所示。在谐振频率下,电阻器 Rdamp 将控制阻尼网络的阻抗以抑制谐振。在AEF 需要进行噪声衰减的高频下,电容器 Cdamp 将控制阻尼网络的阻抗,从而确保 AEF 的性能。按照中所示的类似优化方法,方程式 4 和方程式 5 表示了一个用于谐振阻尼的良好 Rdamp Cdamp 组合:  

     

如何采用适当的补偿和阻尼技术实现AEF 的稳定性和出色性能

 

抑制差模电感器和 AEF 谐振的方法:电阻器阻尼 (a) ;电阻器和电容器并联阻尼 (b)

 

图 2. 抑制差模电感器和 AEF 谐振的方法:电阻器阻尼 (a) ;电阻器和电容器并联阻尼 (b) 。   

 

图 3 显示了 400 kHz 降压转换器在 10 kHz 1 MHz 范围内的频谱测试结果(对应于 AEF 关闭、AEF 开启但无阻尼、AEF 开启且有电阻器-电容器并联阻尼的情况),其中基于方程式 4 和方程式 5 选择 Rdamp Cdamp 。在图 4 中无阻尼的情况下,谐振会在大约 30 kHz 处出现尖峰,这会影响 AEF 性能并使本底噪声增加。使用阻尼网络后,谐振尖峰现在位于 45 kHz 处,但其幅度大大降低,这意味着已成功抑制谐振。因此,AEF 有效地抑制了高频噪声,并且本底噪声大幅降低。     

 

有阻尼和无阻尼的测试结果

 

图 3. 有阻尼和无阻尼的测试结果。   

 

同时具有补偿和阻尼特性的 AEF 性能   

 

通过进行适当的补偿和阻尼,AEF 可以实现显著的降噪效果,如图 4 所示。测量结果是使用 440 kHz 电源转换器获得的,输入电压为 12V,输出为 5V/5AAEF 和转换器均采用 LM25149-Q1 实现。L 1µHCsense 100 nFRDC_fb 50 kΩ,Cinj 470 nF。针对补偿,低频补偿采用 1 kΩ Rcomp 1 nF Ccomp ,高频补偿采用 0.5 ΩRcomp1100 nF Ccomp1 。   

 

针对阻尼,使用的是电阻器和电容器并联阻尼;Rdamp 为15 Ω,Cdamp 220 nF。如图 4 所示,AEF 440 kHz下可实现约 50 dB 的噪声衰减。与性能类似的无源滤波器相比,尺寸可以缩小约 50%,体积可以缩小约 75%。  

   

进行适当补偿和阻尼的 AEF 的降噪情况

 

图 4. 进行适当补偿和阻尼的 AEF 的降噪情况。   

 

关于我爱方案网

 

我爱方案网是一个电子方案开发供应链平台,提供从找方案到研发采购的全链条服务。找方案,上我爱方案网!在方案超市找到合适的方案就可以直接买,没有找到就到快包定制开发。我爱方案网积累了一大批方案商和企业开发资源,能提供标准的模块和核心板以及定制开发服务,按要求交付PCBA、整机产品、软件或IoT系统。更多信息,敬请访问http://www.52solution.com


相关资讯
无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。

拥有卓越性能的高精度超薄低功耗心电贴—YSX211SL

随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。

可编程晶振选型应该注意事项

对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。

性能高的服务器—宽电压有源晶振YSO110TR 25MHZ,多种精度选择支持±10PPM—±30PPM

在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。

差分晶振怎么测量

其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!