发布时间:2022-09-26 阅读量:878 来源: 我爱方案网整理 发布人: Aurora
主要内容:
· 什么是高阶网格;
· 为什么网格曲线化比提升阶数更重要;
· 高阶网格相比于线性网格的优势;
· 如何从线性网格创建高阶网格。
图中两个涡轮叶片是一个线性混合网格(六面体,四面体等)。高阶网格的划分能够在一些关键面上在不损失网格精度的情况下降低网格数量(图片:Cadence)
任何时候针对任何复杂系统进行数值模拟时,控制方程与几何模型都需要经过不同程度的离散化处理。在 CFD 模拟中,网格划分将系统几何模型离散化,创建一组被用于控制方程计算的节点。现代 CFD 的一个挑战是在模拟中如何做到求解高精度、网格高分辨率和低计算资源耗费的平衡。为了达到这一目标,很多网格生成方法的开发都意图在处理复杂几何图形的同时不增加计算复杂性。
在 CFD 模拟使用的多种网格生成方法中,高阶网格是一种能够实现精度、分辨率和计算成本平衡的有效方法。高阶网格划分的目标是利用高阶多项式曲线的优势为 CFD 计算创建网格,从而实现在复杂系统环境下提供比线性网格更高的精度。高阶网格是如何生成的?就计算精度和计算复杂性而言又是如何在线性网格上叠加实现的?您可以在下文中找到答案。
网格阶数的定义
高阶网格是将相邻的网格节点用大于 1 阶(线性)的多项式曲线相连。理解高阶网格最容易的方法是将其与线性网格做比较。在线性网格中,几何图形的网格单元是由一组连接网格节点的直线构成;而高阶网格则用非线性多项式函数(如二次方程)连接网格节点,所以这项技术被称作“网格曲线化”。
采用网格曲线化或高阶网格生成技术的 CFD 网格生成软件通常采用二次到四次多项式。如果将相同技术用于一次多项式,则会返回到线性网格,因此网格曲线化才是一种相对广义的网格生成技术。网格曲线化有很多几何和数学上的优势,但最主要的优点还是在于计算方法。
线性网格 vs. 高阶网格
下图所示的系统是在叶片表面和边界层区域使用线性网格的涡轮叶片网格分布。可以看到,在越接近叶片根部边缘处,网格密度越高。这样做是为了精确的模拟叶片表面弯曲形状以及沿表面边界层的梯度变化。在线性坐标系统中,梯度越靠近表面就会越大,网格密度也会随着梯度的变大而增加。
图中示例的线性网格可以用高阶网格生成技术优化(图片:Cadence)
通过网格曲线化技术,我们可以生成更符合涡轮叶片表面曲度变化的网格,且无需增加网格密度。在线性网格中,高弯曲度的表面需要高密度网格才能获得所需精度。同时,由于数值算法中的运算数量会随着网格密度增加而规模性增加,所以运算时间也会更长。
基于线性网格创建高阶网格
高阶网格可以基于现有的线性网格通过插值法创建。回归分析被用于确定多项式模型或者等效样条模型的系数然后用插值方法给出两端点间的数据点,并将这些数据点赋予曲线网格以符合多项式模型。高阶网格生成要将类似的过程用于线性网格(不管是结构化网格还是混合网网格),以便提取与多项式曲线相关的连续点多项式曲线。
让我们来看下面的图示,线性网格被用于描述有曲度变化的涡轮叶片表面。在对线性网格设定边界条件后,利用算法将线性网格的节点与多项式曲线匹配关联。CFD 工程师可以自行选择最适合模拟需求的多项式网格阶数。针对一些具有特殊多项式曲率的曲面,生成的多项式曲线网格也可以很好的符合叶片表面的曲度变化,且不需要线性网格那样高密度网格节点分布。
完成相关表面的多项式曲线定义后,可以用插值法高效生成任意密度的网格。网格的精度可以通过调整插值后的网格密度或不同的插值方法来进一步优化。下图左可见插值后高阶网格的示例。下图右可以看到一些插值法可能在生成的插值网格中产生伪影,所以选择正确的插值方法也是生成高精确曲线网格的关键。
插值后的多项式曲线网格与插值法导致伪影的线性网格(图片:Cadence)
Cadence Pointwise 网格生成工具可以帮助 CFD 工程师创建复杂几何模型高精度模拟所需要的高阶网格,且不会显著增加计算复杂性。
关于Cadence:
Cadence在计算软件领域拥有超过30年的专业经验,是电子系统设计产业的关键领导者。基于公司的智能系统设计战略,Cadence致力于提供软件、硬件和IP产品,助力电子设计概念成为现实。Cadence的客户遍布全球,皆为最具创新能力的企业,他们向超大规模计算、5G通讯、汽车、移动、航空、消费电子、工业和医疗等最具活力的应用市场交付从芯片、电路板到完整系统的卓越产品。Cadence已连续八年名列美国财富杂志评选的100家最适合工作的公司。
据路透社等多家权威外媒报道,全球碳化硅(SiC)材料与器件的头部企业Wolfspeed Inc. (NYSE: WOLF) 正面临严峻财务危机,即将申请破产保护。消息人士透露,该公司计划采取“预先打包”(pre-packaged)的破产重组模式,由以阿波罗全球管理公司(Apollo Global Management)为首的债权人团体主导接管过程。此消息引发资本市场剧烈反应,Wolfspeed股价在6月19日单日暴跌超过30%,报收于0.8732美元每股,年初至今累计跌幅已高达86.89%,反映出市场对其前景的极度悲观。
天风国际知名分析师郭明錤最新报告指出,苹果折叠屏iPhone核心代工伙伴鸿海(富士康)将于2024年第四季度正式启动项目开发,标志苹果首款折叠屏设备进入工程阶段。根据供应链进度预测,量产时间预计落在2026年第二季度,较此前行业传闻更明确,但最终产品规格仍存调整可能。
当地时间6月18日,全球领先芯片设计厂商Marvell Technology在网络研讨会上宣布,将其定制化人工智能(AI)加速芯片的2028年整体潜在市场规模(TAM)预估从430亿美元大幅调升至550亿美元。受此积极预期推动,Marvell当日股价强势上涨7.09%,报收于74.95美元/股,创下自今年3月5日以来的收盘新高。
Intel 18A作为英特尔“四年五节点”战略的收官之作,首次集成RibbonFET全环绕栅极晶体管和PowerVia背面供电技术两大创新。RibbonFET通过优化栅极静电控制,显著降低漏电率并提升晶体管密度;PowerVia则将供电网络移至晶圆背面,减少信号干扰并降低电阻,使单元利用率提高5%-10%,最坏情况下的固有电阻(IR)下降达10倍。两者的结合推动Intel 18A相较Intel 3实现15%的每瓦性能提升与30%的芯片密度增长,同时在同功耗下性能提升18%-25%,同频下功耗降低36%-38%。
作为数字中国的核心物质与技术基石,电子信息产业在数字经济浪潮中占据着先导性、基础性和战略性地位。在四川,这一产业不仅是六大优势产业之首,更以率先破万亿、并向1.8万亿规模冲刺的强劲势头,在全球产业链中占据举足轻重的地位。成都、绵阳双核驱动,汇聚英特尔、京东方、华为等全球巨头,构建起覆盖新型显示、集成电路、智能终端、先进计算存储及软件服务的全链条生态。这里,柔性显示与芯片设计技术领先,拥有全球顶尖的大尺寸液晶面板基地;即将量产的京东方第8.6代AMOLED产线,更有望将“成都造”高端柔性屏全球份额推升至50%,持续巩固其世界级显示产业高地。