芯片设计既是一门艺术,也是一项工程壮举

发布时间:2022-08-10 阅读量:1189 来源: 我爱方案网整理 发布人: Aurora

芯片设计的风险很高,研究人员一直在努力朝着更优化的设计迈进。随着我们转向小芯片设计,所有小芯片都需要互连才能成为虚拟单片芯片,并且必须考虑延迟和功耗对此类电路复合体的影响。  

 

人工智能技术也必然会帮助我们设计芯片,这也是我们几年前与谷歌工程师讨论过的事情。谷歌这家云计算巨头也继续努力用人工智能技术来进行芯片设计:今年3月,谷歌研究院的科学家们推出了一种深度学习方法PRIME,它可以利用现有数据,造出比使用传统工具设计的芯片更快、更小的加速器设计。  

 

“也许使用先前设计的加速器数据库进行硬件设计的最简单方法,是使用监督机器学习来训练预测模型,该模型可以预测给定加速器的性能目标,”他们在一份报告中写道。“然后,通过优化这个学习模型与输入加速器设计相关的性能输出,人们可能会设计新的加速器。”  

 

一年前,谷歌公司使用了一种名为强化学习(RL)的技术来设计TPU 人工智能技术加速器。不仅仅是谷歌在做这些。SynopsysCadence等芯片设计工具制造商都在将人工智能技术技术应用到自己的产品中。  

 

现在英伟达推出了一种方法,该公司的三位深度学习科学家最近写道,利用人工智能设计更小、更快、更高效的电路,能在每一代芯片中提供更高的性能。大量的算术电路阵列为英伟达 GPU提供了动力,使其在人工智能、高性能计算和计算机图形学方面实现了前所未有的加速。因此,改进这些算术电路的设计对于提高 GPU 的性能和效率至关重要。  

 

英伟达将深度强化学习技术称为PrefixRL,并表示该技术证明人工智能技术不仅可以从头开始学习设计电路,而且人工智能设计的电路也比最先进的电子设计自动化(EDA)工具设计的电路更小更快。最新 NVIDIA Hopper GPU 结构 拥有近13000个人工智能设计电路实例。

  

1660109281517328.png

 

由 PrefixRL AI(左)设计的64b加法器电路比由最先进的 EDA工具(右)设计的电路小25% ,同时速度快,功能等效

 

在一篇关于PrefixRL的研究论文中,研究人员表示他们关注一类流行的算术电路,称为(并行)前缀电路。GPU中的各种重要电路,如加法器、增量器和编码器,都是前缀电路,可以在更高级别上定义为前缀图。  

 

他们专注于一类称为并行前缀电路的算术电路,其中包括加法器、增量器和编码器等电路,所有这些都可以在更高级别定义为前缀图表。Nvidia特别提出了一个问题:人工智能代理能否设计出良好的前缀图?  

 

计算机芯片中的算术电路是使用逻辑门(如NAND、NORXOR)和导线组成的网络构建的。理想电路应该很小,以便芯片上可以容纳更多,快速减少延迟,并尽可能减少功耗。对于PrefixRL,研究人员的重点是电路的大小和速度,他们说这往往是相互竞争的特性。挑战就在于找到最有效地利用两者之间的权衡的设计。  


1660109289712913.png

 

PrefixRL 的一次迭代与 4b 电路示例

 

由于这些物理合成优化,最终电路特性(延迟、面积和功率)不会直接从原始前缀图特性(如电平和节点数)转换。这就是为什么人工智能代理学习设计前缀图,但优化由前缀图生成的最终电路的属性。  

 

研究人员将算术电路设计作为强化学习 (RL) 任务,我们训练一个代理来优化算术电路的面积和延迟特性。对于前缀电路,我们设计了一个环境,RL 代理可以在其中添加或删除前缀图中的节点。  

 

设计过程将前缀图合法化,以确保它始终保持正确的前缀和计算,之后,从合法化的前缀图创建电路。然后,使用物理合成工具对电路进行物理合成优化,最后测量电路的面积和延迟特性。在整个过程中,RL代理通过添加或删除节点逐步建立前缀图。  

 

英伟达研究人员在他们的工作中使用了完全卷积神经网络和Q学习算法(一种RL算法)。该算法对前缀图使用网格表示,其中网格中的每个元素唯一地映射到前缀节点。这种网格表示法用于Q网络的输入和输出。输入网格中的每个元素表示节点是否存在。输出网格中的每个元素表示用于添加或删除节点的Q值。  

 

1660109298892356.png

 

某些 4b 前缀图(左)和全卷积 Q 学习代理架构(右)的表示  

 

运行PrefixRL的计算需求很大。据研究人员称,物理模拟每个GPU需要256CPU64b 案例需要 32000 GPU 小时。为了满足这些需求,英伟达创建了一个名为“Raptor”的分布式强化学习平台,该平台专门利用英伟达硬件来实现这一级别的强化学习。  

 

Raptor 具有一些增强可扩展性和训练速度的功能,例如作业调度、自定义网络和 GPU 感知的数据结构。在PrefixRL的背景下,Raptor使得跨CPUGPUSpot实例的混合分配工作成为可能。  

 

Raptor还包含GPU感知数据结构,用于并行批处理数据并将其预取到GPU。  

 

1660109305595292.png

 

使用 Raptor 进行解耦并行训练和奖励计算,以克服电路合成延迟  

 

研究人员表示,RL代理能够仅基于从合成电路属性反馈中学习,来设计电路,在相同延迟下,最好的 PrefixRL加法器的面积比EDA工具加法器低 25% 。  

 

“据我们所知,这是第一种使用深度强化学习代理来设计算术电路的方法,”研究人员写道。“我们希望这种方法可以成为将人工智能应用于现实世界电路设计问题的蓝图:构建动作空间、状态表示、RL代理模型、针对多个竞争目标进行优化,以及克服物理合成等缓慢的奖励计算过程。”

 

关于我爱方案网

 

我爱方案网是一个电子方案开发供应链平台,提供从找方案到研发采购的全链条服务。找方案,上我爱方案网!在方案超市找到合适的方案就可以直接买,没有找到就到快包定制开发。我爱方案网积累了一大批方案商和企业开发资源,能提供标准的模块和核心板以及定制开发服务,按要求交付PCBA、整机产品、软件或IoT系统。更多信息,敬请访问http://www.52solution.com


相关资讯
贸泽电子发布智能家居开发平台,集成Arduino/NXP/Qorvo创新方案

为加速智能家居的普及与创新,全球知名电子元器件分销商贸泽电子重磅推出全新的 “智能家居资源中心”。该中心汇聚海量精选技术资料,为工程师打造下一代自动化与互联解决方案提供强力支持。随着智能恒温器、冰箱等物联网设备深入家庭生活,用户对个性化体验、能源效率与安心安全的需求激增。工程师们正面临着融合如三频通讯、Matter协议等前沿技术以构建无缝智能生态系统的挑战。贸泽的资源中心正是为此而生,致力于简化设计流程,将未来互联家庭的愿景变为现实。

思特威突破车载视觉"卡脖子"难题:首颗全流程国产3MP CIS量产

在全球汽车产业加速迈向智能化、网联化的浪潮中,高可靠、高性能的车载图像感知系统扮演着至关重要的角色。环视摄像头作为感知车辆周边环境的“眼睛”,其性能直接关系到驾驶安全与辅助驾驶功能的体验。2025年7月,思特威(上海)电子科技股份有限公司(股票代码:688213)正式发布Automotive Sensor (AT) Series系列的重要成员——SC326AT。这不仅是一款3MP(300万像素)高性能车规级CMOS图像传感器新品,更是思特威车载系列中首款实现设计、制造到量产全流程国产化的里程碑式产品。它基于思特威自研的CarSens®-XR工艺平台打造,在核心成像性能、环境适应性及系统集成度上均实现显著突破,直指高端环视应用的痛点,为提升智能汽车感知系统的韧性与竞争力提供了强有力的国产化支撑。

苹果芯片版图再扩张!7款自研芯片曝光,深化垂直整合战略

根据近期知名开发者社区曝光的最新信息显示,苹果正在加速其芯片自研进程,计划推出至少7款尚未对外公开的全新芯片设计。这一雄心勃勃的计划涵盖了其核心终端产品线,包括应用于未来iPhone的A19系列、下一代Mac的M5系列、新款Apple Watch处理器、第二代5G调制解调器C2,以及一款具备突破性集成设计的通信芯片Proxima。多项证据表明,苹果正加速推进全产品线核心处理器代际更新,深化垂直整合优势。

轴向电阻SMD化!Vishay AC03-CS WSZ系列降本增效解决方案详解

在现代电子制造业,提升自动化装配效率与降低生产成本是企业持续追求的目标。通孔元件(THT)在贴装环节往往需要额外的插件工序,相较表面贴装元件(SMD)效率较低。针对这一行业痛点,全球领先的电子元件制造商威世科技(Vishay Intertechnology, Inc., NYSE: VSH)宣布其广受欢迎的AC03-CS系列轴向绕线安全电阻推出创新的WSZ引线版本选件。这一设计革新使得原本需要插件工艺的轴向电阻能够无缝融入标准的SMT(表面贴装技术)生产线,显著缩短装配周期并有效控制整体制造成本。本次升级为汽车电子、工业驱动及智能能源等领域的关键安全电路设计提供了兼具性能与成本效益的全新解决方案。

Meta豪掷2亿美元争抢AI顶尖人才,超级智能团队组建引发行业震动​

全球人工智能人才争夺战已进入白热化阶段。Meta公司近期以突破行业纪录的薪酬方案招募前苹果公司AI模型研发负责人庞如明(Ruoming Pang),据悉该方案总价值逾2亿美元,包含现金奖励与长期股权激励。此举标志着科技巨头对顶尖AI人才的投入达到前所未有的量级。