ADALM2000实验:从三角波生成正弦波

发布时间:2021-11-26 阅读量:1797 来源: ADI 发布人: wenwei

【导读】本次实验评估的电路利用SSM2212 NPN匹配晶体管对中包含的差分晶体管对的特性,从一个三角波生成一个近似正弦波。我们知道,差分晶体管对的跨导定义为:


1.png


其中,IO为差分对尾电流,VIN为差分输入电压,VT为热电压,在室温下大约是26 mV。


材料


●     ADALM2000 主动学习模块

●     无焊面包板

●     跳线

●     一个10 kΩ电阻

●     四个4.7 kΩ电阻

●     一个2.2 kΩ电阻

●     两个220 Ω电阻

●     一个390 Ω电阻

●     一个500 Ω电位计

●     一个100 pF电容

●     两个小信号NPN晶体管(SSM2212 NPN匹配对)

●     一个运算放大器(OP27)


说明


在无焊面包板上构建图1所示电路。原理图中未显示OP27放大器的+5 V(引脚7)和-5 V(引脚4)电源连接,但要记住连接它们,否则电路将不工作。


2.png

图1.差分对三角波变正弦波转换器


W1设置如下:


●     幅度(峰峰值)= 3.6 V

●     偏移 = 0 V

●     频率 = 1 kHz

●     三角波


调整500Ω电位计R6,使输出正弦波形实现最佳对称性。使用FFT显示屏并寻找最小偶数阶失真,可能是测试输出正弦波质量的好办法。可能需要调整输入三角波的幅度和直流偏移,看看其能否改善输出的奇数阶谐波。


对于本电路,输出电压近似为:


3.png


其中RL表示输出上的4.7 kΩ负载电阻。发生2分压的原因是我们仅需要一个单端输出,而非差分输出。


所以,输出电压将是输入电压的双曲正切函数。正弦和双曲正切函数的泰勒级数的前几项分别如式3和式4所示。


4.jpg

图2.差分对三角波变正弦波转换器面包板连接


正弦:


5.png


双曲正切:


6.png


比较这两个泰勒级数表明,二者均有一阶线性分量。这意味着,如果我们将一个三角波应用于一个具有双曲正切转换函数的差分对并保持较低幅度(大约2VT),则输出应与正弦波几乎无区别。差分对输入端(Q1的基极)的2.2 kΩ和220 Ω电阻的作用是衰减来自AWG的三角波信号,使电路在输出失真正弦波尽可能低的范围内工作。


硬件设置


将图1所示电路连接到面包板。


程序步骤

配置示波器以捕获所测量的两个信号的多个周期。使用Scopy的波形示例如图3所示。


1637923804752422.jpg

图3.差分对三角波变正弦波转换器的Scopy波形


三角波发生器


为了制作一个独立的正弦波发生器,我们需要将ADALM2000模块波形发生器替换为三角波发生器。 AD654 电压频率转换器IC是三角波发生器的基础。AD654的常规输出是开集数字方波信号。然而,AD654的内部时序电路使用一个斜坡发生器。此内部斜坡波形是在图4中连接到引脚6和7的外部时序电容上以差分形式提供。我们无法在不干扰AD654内部时序的情况下直接使用此三角波信号。我们可以使用 AD8226 仪表放大器来缓冲该差分信号并将其转换为单端信号。通过调整该三角波信号的幅度,我们可以利用它来驱动图1中的三角波变正弦波转换器电路。


材料


●     两个1 kΩ电阻

●     一个47 kΩ电阻

●     一个6.8 kΩ电阻

●     一个220 Ω电阻

●     一个5 kΩ电位计

●     一个0.1 μF电容

●     一个1 μF电容

●     一个红光LED

●     一个电压频率转换器AD654

●     一个仪表放大器AD8226

●     一个小信号NPN晶体管(2N3904)


8.png

图4.电压转频率三角波发生器


9.jpg

图5.电压转频率三角波发生器面包板连接 


将AD8226的三角波输出连接到三角波变正弦波转换器的输入时,用5 kΩ电位计代替2.2 kΩ固定电阻R1以调整信号幅度,实现最优正弦波形。


硬件设置


将图4所示电路连接到面包板。


程序步骤


使用ADALM2000,输出如图6所示。我们可以调整仪表放大器的增益电阻(R16),使电路输出在仪表放大器电源的范围内。


在图6所示的Scopy波形中,R16为168 kΩ。


1637923631310893.jpg

图6.电压转频率三角波发生器Scopy波形 


问题:


●     对于图1中的电路,说明R6电位计设置为最小/最大电阻值时如何影响输出信号。


您可以在学子专区博客上找到问题答案:ez.analog.com/studentzone。



免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


推荐阅读:


降额曲线和最大电流(下)

降额曲线和最大电流(上)

低成本MCU助力电池组系统实现强大功能

可将门级驱动电路和6个功率MOSFET合二为一的解决方案

大功率二极管晶闸管知识连载——保护

相关资讯
革新辅助电源设计:1700V SiC MOSFET赋能20-200W高效系统​

在电机驱动、电动汽车、快速充电和可再生能源系统中,低功耗辅助电源常被视为"幕后功臣"——尽管其功率等级远低于主功率系统,却直接影响着整套设备的可靠性与能效。面对提升可靠性、缩小体积、降低成本、规避供应链风险等多重挑战,设计人员亟需突破传统设计局限的创新解决方案。Wolfspeed全新推出的工业级 C3M0900170x 与车规级认证(AEC-Q101) E3M0900170x 碳化硅MOSFET系列,正为20-200W辅助电源设计提供关键赋能,助力工程师在性能与成本的博弈中开辟新路径。

安森美Hyperlux SG:攻克全局快门三大痛点 (高性能、高效率、低功耗)​

在当今高速成像应用中,如机器视觉、自主导航、增强/虚拟现实(AR/VR/MR)和条码扫描,传统的卷帘快门图像传感器往往力不从心,会因运动模糊或空间失真严重影响图像质量。为克服这些挑战并精准“冻结”快速运动的物体,具备全局快门特性的先进CMOS图像传感器成为关键选择。安森美深知工程师在为高速应用筛选最优全局快门传感器时需权衡大量参数(如分辨率、光学格式、帧率、功耗、动态范围、全局快门效率GSE及信噪比SNR等)以及高级功能(如同步触发、嵌入式自动曝光、ROI选择),因此开发了创新的Hyperlux SG系列产品。

常关型SiC Combo JFET结构

安森美SiC Combo JFET技术通过创新性集成常开型SiC JFET与低压Si MOSFET,构建出高性能共源共栅(cascode)结构,攻克了SiC器件常开特性的应用瓶颈。该方案兼具SiC材料的高压处理能力、超低导通电阻(RDS(on))与卓越热性能,以及Si MOSFET的易控常关特性,为大电流应用(如固态断路器、高功率开关系统)和多器件并联场景提供突破性的功率密度与效率解决方案。

920nm问世+低红曝优选:IR:6技术精准匹配多元红外应用场景

IR:6红外芯片通过实质性的技术创新,显著提升了在面部识别、智能传感器和节能系统等应用中的关键性能(亮度、效率和图像质量)。它在人眼不可见的红外领域展现出卓越表现,特别是在安防领域以更高亮度、更低功耗和更优画质设定了新的距离覆盖和可靠性标准。

工业电动化浪潮:充电器设计的效率与尺寸挑战

工业设备加速迈向电动化,对稳健、高效、适应性强的电池充电器需求激增。无论是手持工具还是重型机械,充电器必须应对严苛环境和全球通用电压输入(120-480 Vac),并优先满足小型化、轻量化及被动散热的设计要求。在这一关键任务中,功率因数校正(PFC)级的拓扑选择至关重要,它直接影响着系统效率、尺寸和成本。本文将剖析现代工业充电设计的核心挑战,重点对比传统升压 PFC 与日益流行的图腾柱 PFC 拓扑方案,并探讨碳化硅(SiC)MOSFET 如何颠覆性地赋能高效率解决方案,为工程师提供清晰的设计指导。