ADALM2000实验:从三角波生成正弦波

发布时间:2021-11-26 阅读量:1777 来源: ADI 发布人: wenwei

【导读】本次实验评估的电路利用SSM2212 NPN匹配晶体管对中包含的差分晶体管对的特性,从一个三角波生成一个近似正弦波。我们知道,差分晶体管对的跨导定义为:


1.png


其中,IO为差分对尾电流,VIN为差分输入电压,VT为热电压,在室温下大约是26 mV。


材料


●     ADALM2000 主动学习模块

●     无焊面包板

●     跳线

●     一个10 kΩ电阻

●     四个4.7 kΩ电阻

●     一个2.2 kΩ电阻

●     两个220 Ω电阻

●     一个390 Ω电阻

●     一个500 Ω电位计

●     一个100 pF电容

●     两个小信号NPN晶体管(SSM2212 NPN匹配对)

●     一个运算放大器(OP27)


说明


在无焊面包板上构建图1所示电路。原理图中未显示OP27放大器的+5 V(引脚7)和-5 V(引脚4)电源连接,但要记住连接它们,否则电路将不工作。


2.png

图1.差分对三角波变正弦波转换器


W1设置如下:


●     幅度(峰峰值)= 3.6 V

●     偏移 = 0 V

●     频率 = 1 kHz

●     三角波


调整500Ω电位计R6,使输出正弦波形实现最佳对称性。使用FFT显示屏并寻找最小偶数阶失真,可能是测试输出正弦波质量的好办法。可能需要调整输入三角波的幅度和直流偏移,看看其能否改善输出的奇数阶谐波。


对于本电路,输出电压近似为:


3.png


其中RL表示输出上的4.7 kΩ负载电阻。发生2分压的原因是我们仅需要一个单端输出,而非差分输出。


所以,输出电压将是输入电压的双曲正切函数。正弦和双曲正切函数的泰勒级数的前几项分别如式3和式4所示。


4.jpg

图2.差分对三角波变正弦波转换器面包板连接


正弦:


5.png


双曲正切:


6.png


比较这两个泰勒级数表明,二者均有一阶线性分量。这意味着,如果我们将一个三角波应用于一个具有双曲正切转换函数的差分对并保持较低幅度(大约2VT),则输出应与正弦波几乎无区别。差分对输入端(Q1的基极)的2.2 kΩ和220 Ω电阻的作用是衰减来自AWG的三角波信号,使电路在输出失真正弦波尽可能低的范围内工作。


硬件设置


将图1所示电路连接到面包板。


程序步骤

配置示波器以捕获所测量的两个信号的多个周期。使用Scopy的波形示例如图3所示。


1637923804752422.jpg

图3.差分对三角波变正弦波转换器的Scopy波形


三角波发生器


为了制作一个独立的正弦波发生器,我们需要将ADALM2000模块波形发生器替换为三角波发生器。 AD654 电压频率转换器IC是三角波发生器的基础。AD654的常规输出是开集数字方波信号。然而,AD654的内部时序电路使用一个斜坡发生器。此内部斜坡波形是在图4中连接到引脚6和7的外部时序电容上以差分形式提供。我们无法在不干扰AD654内部时序的情况下直接使用此三角波信号。我们可以使用 AD8226 仪表放大器来缓冲该差分信号并将其转换为单端信号。通过调整该三角波信号的幅度,我们可以利用它来驱动图1中的三角波变正弦波转换器电路。


材料


●     两个1 kΩ电阻

●     一个47 kΩ电阻

●     一个6.8 kΩ电阻

●     一个220 Ω电阻

●     一个5 kΩ电位计

●     一个0.1 μF电容

●     一个1 μF电容

●     一个红光LED

●     一个电压频率转换器AD654

●     一个仪表放大器AD8226

●     一个小信号NPN晶体管(2N3904)


8.png

图4.电压转频率三角波发生器


9.jpg

图5.电压转频率三角波发生器面包板连接 


将AD8226的三角波输出连接到三角波变正弦波转换器的输入时,用5 kΩ电位计代替2.2 kΩ固定电阻R1以调整信号幅度,实现最优正弦波形。


硬件设置


将图4所示电路连接到面包板。


程序步骤


使用ADALM2000,输出如图6所示。我们可以调整仪表放大器的增益电阻(R16),使电路输出在仪表放大器电源的范围内。


在图6所示的Scopy波形中,R16为168 kΩ。


1637923631310893.jpg

图6.电压转频率三角波发生器Scopy波形 


问题:


●     对于图1中的电路,说明R6电位计设置为最小/最大电阻值时如何影响输出信号。


您可以在学子专区博客上找到问题答案:ez.analog.com/studentzone。



免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


推荐阅读:


降额曲线和最大电流(下)

降额曲线和最大电流(上)

低成本MCU助力电池组系统实现强大功能

可将门级驱动电路和6个功率MOSFET合二为一的解决方案

大功率二极管晶闸管知识连载——保护

相关资讯
时钟芯片RTC原理介绍、晶振选型、应用场景

【小知识】时钟芯片一种高性能、低功耗、带RAM的实时时钟电路,英文名称:Real-time Clock/Calendar Chip(简称:RTC),可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能。采用IIC通信接口。

晶振起振检测四大核心方法:示波器、万用表、频率计实操指南

晶振作为电子设备的"心跳发生器",其起振状态直接决定系统能否正常运行。本文深度解析四种检测方法的实战要点:示波器法需规避探头电容引发的停振风险,万用表电压法需警惕芯片故障导致的误判,频率计通过波形特征精准锁定起振状态,而听声辨振实为认知误区——人耳可闻的异常声响反而暴露晶振缺陷。随着5G/新能源产业爆发式增长,国产晶振厂商正加速技术攻坚,保障起振检测的可靠性已成为行业刚需。

可编程晶振怎么改变频率

可编程晶振改变频率的核心原理是:通过内部集成的锁相环(PLL)和数字分频/倍频电路,对基础石英晶体产生的固定频率进行精密的数学运算(分频、倍频、分数分频),最终输出一个用户通过数字接口(如I²C、SPI)编程设定的目标频率。

巴克豪森准则:振荡器起振的相位与增益平衡艺术

晶振是电路中可以提供高度稳定时钟信号的元器件。通常一个系统共用一个晶振,便于各部分保持同步,一起“干大事”。比如在我们常用的计算机系统中,晶振可比喻为各板卡的“心跳”发生器,如果主卡的“心跳”出现问题,必定会使其他各电路出现故障。人体的心跳搏动,离不开血液。晶振也是一样,离不开电流。

从XTAL到OCXO:解析五大晶振类型及其技术皇冠

晶振自身产生时钟信号,为各种微处理芯片作时钟参考,晶振相当于这些微处理芯片的心脏,没有晶振,这些微处理芯片将无法工作。晶振的作用就是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。晶振主要运用于单片机、DSP、ARM、PowerPC、CPLD/FPGA等CPU,以及PCI接口电路、CAN接口电路等通讯接口电路。