发布时间:2021-11-23 阅读量:990 来源: ADI 发布人: lina
线性电池充电器通常比一般的开关型充电器更细小.简单和便宜,但是它有一个主要缺点:当输入电压高和电池电压低(已放电的电池)时会出现过高的功率耗散。在典型情况下,这些状态是暂时性(因为电池电压随著充电而增加),但是在确定充电电流和IC温度的最大允许值时,必须考虑到这种最坏情况。
一种解决过热问题的简单方法是降低充电过程中整个恒流部分的充电电流。这种方法的问题是相应增加了充电时间。另一较好的选择是采用LTC1733锂离子单节电池线性充电器,它克服了任何过热问题,也可维持快速充电时间。IC内部的独特热反馈环允许在正常条件下全电流快速充电,并且在最坏情况下不会过热(包括高环境温度、高输入电压或低电池电压状态)。
热反馈环限制IC温度
热反馈环限制了LTC1733的最高结温在105°C左右,比最高允许结温125°C低得多。当结温接近105°C时,芯片内的温度传感器开始平稳地降低充电电流至一个限制最高结温至105°C的水平(见图1)。与简单地在160°C关断而作出自我保护的IC不同,LTC1733可长期地工作在这种温度控制方式下。具有160°C热关机温度的器件会开始在热限值内导通和关断,或者不能正确地作为充电器运行。热关机不是运行的可取方式,比较好的还是在过热时保护IC不会失效。
图1:高环境温度情况下的LTC1733锂离子电池充电周期
具有热限制运行的充电周期
图1示出最坏温度情况下的典型锂离子单节电池充电周期。曲线显示电池电压.充电电流和印制电路板的温度与时间的关系。
当输入功率加到连接的电池和在程控电阻接地时,充电周期即开始。深放电的电池在全电流的10%时慢慢充电,直至电池电压达到2.48V时充电器再切换到全电流充电。
在充电周期启动时,充电电流快速增加到1.5A设置值,引起电池电压升高到3.2V。在5.3V的输入电压下,LTC1733的3.2W功率耗散使结温升到大约105°C,2" × 2"PCB的温度(散热体)约在1.5分钟内达到85°C左右。热反馈环降低充电电流来限制任何额外的温度上升。当电池电压增加时,LTC1733温度开始下降,使得充电电流再次增加到1.5A设置电流水平。充电继续在1.5A恒流下进行,直至电池电压达到4.2V为止,此时进入充电周期的恒压段。这情况继续而充电电流继续下降,直至3小时的定时器结束充电周期为止(图1示出前90分钟的情况)。
增强散热的封装显著改善功率耗散
特小外型(1.1毫米)的10引脚MSOP封装和露出底部金属焊盘允许IC直接焊接到PCB铜层上,这明显降低从结至外壳的热阻。良好的热布局使得LTC1733在25°C环境温度下用2” × 2"的4层PCB板可连续耗散高达2.5W。
良好的热布局包括封装下面的PCB铜层直接散布到整个铜面积,以及通过热通孔传到内部和背部的铜层来构成。对于表面贴装器件,PCB铜层变成一个有效的散热体。
将整个IC的金属焊盘焊接到PCB板来保证良好的热传导也是非常重要的。测试表明,在大的4.5W起始功率加到封装时,不良焊接的封装在几秒就达到热反馈温度,而好的焊接装置则要一分钟以上。
完全独立的充电器
LTC1733是单节锂离子电池的一个完全恒流、恒压、功率限制的线性充电器,如图2所示。IC含有1.5A功率MOSFET、电流检测电阻、可设置充电电流、可设置定时器、可选充电电压和热敏电阻输入以监视充电资格的电池温度。有三种状态输出可驱动LED显示‘AC电源好’、‘充电'和‘故障’。还有监视充电电流的输出。输入电压的要求是4.5V至6.5V和可用手动关机,以及有一个在输入电压断开时的微功率休眠方式。由于采用内部MOSFET结构而无需阻塞二极管。
图2:用于4.1V或4.2V电池的完整1.5A单节锂电池充电器(无需外部MOSFET、阻塞二极管或检测电阻)
结论
LTC1733是独立的锂离子电池线性充电器IC,它容许充电电流设置在标称的VIN、VBATTERY和环境温度下,而在某些短暂充电条件下不会出现过高温度。这容许更高的充电电流(达到更快充电)和保证偶然的最坏情况不会引起系统过热。
在汽车电子智能化、网联化与电动化深度融合的浪潮中,车载时钟系统的精度与可靠性正成为决定整车性能的核心命脉。作为电子架构的"精准心跳之源",车规级晶振的选型直接影响ADAS感知、实时通信、动力控制等关键功能的稳定性。面对严苛路况、极端温差及十年以上的生命周期挑战,工程师亟需兼具高稳定性与强抗干扰能力的时钟解决方案——小扬科技将聚焦车规级晶体/晶振核心参数,3分钟助您精准锁定最优型号。
在技术创新的浪潮中,图像传感器的选型是设计与开发各类设备(涵盖专业与家庭安防系统、机器人、条码扫描仪、工厂自动化、设备检测、汽车等)过程中的关键环节。选择最适配的图像传感器需要对众多标准进行复杂的综合评估,每个标准都直接影响最终产品的性能和功能。从光学格式(Optical Format)和动态范围(Dynamic Range),到色彩滤波阵列(CFA)、像素类型、功耗及特性集成,这些考量因素多样且相互交织、错综复杂。
压控晶振(VCXO)作为频率调控的核心器件,已从基础时钟源升级为智能系统的"频率舵手"。通过变容二极管与石英晶体的精密耦合,实现电压-频率的线性转换,其相位噪声控制突破-160dBc/Hz@1kHz,抖动进入亚纳秒时代(0.15ps)。在5G-A/6G预研、224G光通信及自动驾驶多传感器同步场景中,VCXO正经历微型化(2016封装)、多协议兼容(LVDS/HCSL/CML集成)及温漂补偿算法的三重技术迭代。
在电子设备的精密计时体系中,晶体振荡器与实时时钟芯片如同时间系统的"心脏"与"大脑":晶振通过石英晶体的压电效应产生基础频率脉冲,为系统注入精准的"生命节拍";而实时时钟芯片则承担时序调度中枢的角色,将原始频率转化为可追踪的年月日时分秒,并实现闹钟、断电计时等高级功能。二者协同构建现代电子设备的"时间维度"。
无人机已不再是简单的飞行器,而是集成了尖端感知与决策能力的空中智能载体。其核心系统——特别是自主导航与感知技术——是实现其在测绘、巡检、农业、物流、安防等多个领域高效、精准作业的关键。本文将深入剖析无人机如何通过这些核心技术“看见”、“思考”并“规划”路径,实现真正意义上的自主飞行能力。