发布时间:2021-11-22 阅读量:936 来源: ADI 发布人: wenwei
【导读】现代汽车和工业系统需要稳定的电压源,即使系统输入电压从一个极端变到另一个极端,电压源也须保持稳定。在汽车系统中,冷起动、动态燃油管理系统中的气缸停用/激活或发动机负载显著改变可能会导致输入电压发生明显变化。同样,在工业应用中,线路电压不足是一个问题,大功率设备的电机开启会导致输入电压严重下降。
即便电源转换系统无法在低压输入下为负载提供所需全部功率,但无论输入电压电平如何,这些系统中的许多系统都必须保持运行状态。例如,广泛使用的高压升压和降压转换器采用具有标准栅极电平的高压MOSFET。当输入下降时,偏置电压应保持在10 V以上,以使栅极驱动器维持正常工作。无论输入条件如何,关键的数字控制和信息系统都应具有偏置电压并保持运作。
本文介绍在源电压为5 V至140 V的电气系统中维持偏置电压的解决方案。
电路描述及功能
如果预计输入电压不会降至所需的偏置电平以下,并且设计目标是使用外部偏置电源来最大程度地降低开关控制器的功耗,那么可以采用简单的降压转换器。
图1显示了这种方法。解决方案的重点是带有内部开关晶体管的高压降压控制器LTC7138 。电源系统还包括电感L1、二极管D1以及输出电容C2和C3。为使解决方案高度最小(3 mm以下),输入中仅使用陶瓷电容。也可以使用极化电容(例如高性价比22 µF200 V EMVE201 ARA220MKG5S),但它会大大增加偏置电源的高度。
图 1. 高压降压偏置电路原理图, VIN 为 12.5 V 至 140 V ,VOUT 为 12 V at 0.2 A.
此电路已经经过验证和测试,图2中的波形说明了其功能。100 V的初始输入电压电平降至12 V,但输出向负载提供稳定的0.2 A、12 V电压。
图 2. 高压降压偏置电路波形, VIN 为 20 V/div , VOUT 为 5 V/div ,时间标尺为 50 ms/div 。
如果输入电压降至所需的偏置电平以下,此设计的性能展望将发生显著变化。在这种情况下,仅使用降压转换器是不够的,因为当输入降至所需的输出以下时,输出电压会跟随输入。图3显示了一种使用双级偏置电源的解决方案。第一级(主级)是类似于图1所示的高压降压转换器。其输出连接到升压转换器,并基于集成功率晶体管的LT8330 转换器IC。电源系统包括电感L2、二极管D2和输出滤波器。与降压前端相比,升压转换器电路中的元器件上的电压应力要低得多,因而可以选择相对便宜的器件,总成本得以降低。
图 3. 高压双级电路原理图, VIN 为 5 V 至 140 V , VOUT 为 10.5 V ( 0.1 A 至 0.15 A )。
此电路中的降压转换器输出设置为12.5V。但是,升压转换器的输出设置为10.5 V的较低电压,足以使负载正常工作。转换器永远不会同时工作。如果一个正在切换,另一个就不会切换
在正常工作条件下(VIN > 12.5 V),当输入电压从12.5 V变为100 V时,只有降压转换器处于工作状态,为负载提供12.5V电压。电流通过升压转换器的电感和二极管流向负载端子VOUT 。由于电流电平相对较低,该电流路径中的损耗极小。
只要 VIN > 12.5 V,升压转换器的输出端电压就是12.5 V,远超过预设值10.5 V,因此升压部分无开关动作,仅降压部分有效。
当输入电压降至12.5 V或更低时,降压转换器停止切换,但内部P沟道MOSFET保持导通状态,从而支持以100%占空比工作。
如果输入电压降至12.5 V以下,则两个电压VRAIL (中间轨)和VOUT均降至VIN 电平。在中间轨的10.5 V < VRAIL < 12.5 V范围内,转换器的降压和升压部分均不切换。
如果输入电压继续下降,VRAIL 电平降至10.5 V以下,则升压转换器开始工作,使V OUT 保持在10.5V。
图4给出了说明该转换器功能的波形。负载电流为0.15A时,最小输入电压为5.5 V。负载降低至0.1 A时,对应的最小输入电压为5.0 V,如图5所示。输入电压从5 V上升到100 V的情况如图6所示。转换器的照片如图7所示。
图 4. 高压双级偏置电路波形。负载电流为 0.15 A ,时间标尺为 50 ms/div 。
图 5. 高压双级偏置电路波形。负载电流为 0.1 A ,时间标尺为 50 ms/div 。
图 6. 输入电压上升波形。负载电流为 0.1 A ,时标为 50 ms/div 。
图 7. LTC7138 转换器试验板。
转换器选型的基本注意事项
最大输入电压和负载电流决定了升压转换器的最小工作输入电压,从而也决定了整个电源的最小输入电压。
假设给定 VO, IMAX和 IO ,则升压转换器最小电压可表示为
但是,如果给定 VO, VINMIN和 IMAX 则最大输出电流IO为
结论
让主要电源系统在宽输入电压范围内运行很重要。本文讨论了实现此目标的解决方案。在最高140 V、最低5 V的输入电压范围内,当输入电压下降时,本文所述电路可以产生稳定的偏置电平。安全的偏置电平可确保高压MOSFET和控制模块正常工作。所提出的使用高集成度转换器的方案减少了元件数量并降低了总成本。如果应用需要,可以进行调整以使解决方案高度最小。
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。
推荐阅读:
【小知识】时钟芯片一种高性能、低功耗、带RAM的实时时钟电路,英文名称:Real-time Clock/Calendar Chip(简称:RTC),可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能。采用IIC通信接口。
晶振作为电子设备的"心跳发生器",其起振状态直接决定系统能否正常运行。本文深度解析四种检测方法的实战要点:示波器法需规避探头电容引发的停振风险,万用表电压法需警惕芯片故障导致的误判,频率计通过波形特征精准锁定起振状态,而听声辨振实为认知误区——人耳可闻的异常声响反而暴露晶振缺陷。随着5G/新能源产业爆发式增长,国产晶振厂商正加速技术攻坚,保障起振检测的可靠性已成为行业刚需。
可编程晶振改变频率的核心原理是:通过内部集成的锁相环(PLL)和数字分频/倍频电路,对基础石英晶体产生的固定频率进行精密的数学运算(分频、倍频、分数分频),最终输出一个用户通过数字接口(如I²C、SPI)编程设定的目标频率。
晶振是电路中可以提供高度稳定时钟信号的元器件。通常一个系统共用一个晶振,便于各部分保持同步,一起“干大事”。比如在我们常用的计算机系统中,晶振可比喻为各板卡的“心跳”发生器,如果主卡的“心跳”出现问题,必定会使其他各电路出现故障。人体的心跳搏动,离不开血液。晶振也是一样,离不开电流。
晶振自身产生时钟信号,为各种微处理芯片作时钟参考,晶振相当于这些微处理芯片的心脏,没有晶振,这些微处理芯片将无法工作。晶振的作用就是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。晶振主要运用于单片机、DSP、ARM、PowerPC、CPLD/FPGA等CPU,以及PCI接口电路、CAN接口电路等通讯接口电路。