发布时间:2021-09-10 阅读量:1009 来源: 我爱方案网 作者: 硬件大熊
IOT低功耗设备设计大致为3个方面的设计:器件选型、电路设计、软件设计、续航寿命估算
器件选型
典型的器件包括:单片机MCU、电源芯片、通讯模组等。
单片机——
1、选择具备多种低功耗工作模式的MCU,如国民技术N32G4FR系列MCU支持5种低功耗模式(Sleep,Stop0,Stop2,Standby,VBat),开启带有RTC唤醒的Stop模式可让功耗尽可能低;
2、支持宽范围供电,如1.8-3.3V,在不需要大电流供电的模式下,使用1.8V供电可以让MCU处于更低功耗的状态;
3、不使用的IO配置为模拟输入,模拟输入模式下漏电流最低;
电源芯片——
1、选择更高效率的电源IC,开关电源DC-DC的效率高于LDO,特别在高压差、大电流的情况下,DC-DC具备更高的能效优势,对于常供电的IC,关注静态电流值,对于带EN管脚的IC,关注Shutdown电流值;
2、LDO的成本比DC-DC低,且在低压差、低电流的情况下,具备低功耗特性的LDO也可做考虑,如圣邦微的SGM2034,静态漏电流为1uA;
通讯模组——
1、通讯模组中的MCU部分可参考单片机的的低功耗设计,本质上具备一致性;
2、2.4G的通讯模组,ZigBee低功耗具备更大优势,BLE蓝牙Mesh这两年间也开始逼近ZigBee,WiFi则比较大,同等条件下,ZigBee的发射电流可以做到50mA以内,而WiFi的发射电流一般要大于300mA,加上心跳包对接时间的差异,具备快联特性的WiFi可能需要10ms,而ZigBee可能只需要3-5ms。
3、通讯模组OTA的功耗 > 搜网功耗 > 静态功耗。另外,网关信号正常与异常,也会导致通讯模组在搜网时的功耗有所不同。
电路设计
1、对于耗电比较大的器件,使用独立IC供电,并尽可能做到可独立关断供电回路,在非常供电的状态下切断供电回路;
2、对于上下拉电阻,在确保信号抗干扰度良好的前提下,尽可能使用高阻值;如对于1K的上拉电阻,当电流回路对地时,产生3300uA的电流,而对于100K的上拉电阻,则为33uA。当然,对于外界的工频干扰等,同样的条件下,10K的上拉电阻具备更高的抗干扰度;
3、电池电量检测采用分压电阻时可使用1M左右的阻值,由于涉及单片机ADC阻抗匹配的不同(关于ADC阻抗匹配,可参考《单片机读取外部电压ADC阻抗匹配问题》),建议在信号的采集中间加上一级电压跟随器,该跟随器需要低功耗或者需要单独供电,避免无谓的电量损耗;
4、对于有光显示的场景,如LED指示等,尽可能降低LED亮度。
软件设计
软件设计更多地体现在如何驱动硬件进入低功耗模式,如:开启单片机RTC唤醒的Stop模式;控制电源的EN管脚进入非常供电模式;GPIO的模拟输入模式;通讯模组在发送完成数据之后,立即关闭UDP连接,尽可能降低大电流模式持续时间
续航寿命估算
1、对于静态电流,可使用万用表进行测量(如Fluke的17B+),由于万用表的采样率较低,且所呈现的数值为测量有效值,因此对于动态电流,如设备的间隔性心跳包电流,则需要使用采样率更高的仪器进行测量,如Keysight的N6705C;(关于低功耗测量仪器,可参考《浅谈4款低功耗电流测试“神器”》)
2、严谨的功耗计算中,需考虑电池的自放电率,即电池即使在不使用的条件下,自身的电化学物质也会产生一定的反应自我消耗,特别是可充电的镍镉电池;
3、简单举一个低功耗设备续航时间计算的例子:
假设电池容量250mAh,10分钟发送一次心跳包对接网络,每次5秒30mA瞬时电流,待机20uA电流,可做如下推算:
单次对接网络耗电:30mA x 5s = 150mAs = 41.66uAh;
一天对接网络次数:(24h x 60)÷10 = 144次;
一天对接网络总时间:5s x 144 = 720s;
一天待机总时间:(24h x 3600)s - 720s = 85680s = 23.8h;
一天总功耗:(23.8h x 20uA) + (144 x 41.66uAh) = 6475.04uAh = 6.48mAh;
可使用天数:250mAh ÷ 6.48mAh ≈ 39天
碳化硅(SiC)功率器件正以颠覆性优势引领工业充电器变革——其超快开关速度与超低损耗特性,驱动功率密度实现跨越式提升,同时解锁了传统IGBT无法企及的新型拓扑架构。面对工业应用对高效隔离式DC-DC转换的严苛需求,本文将深入解析从600W至深入解析从600W至30kW全功率段的拓扑选型策略,揭示SiC技术如何成为高功率密度设计的核心引擎。
在汽车电子智能化、网联化与电动化深度融合的浪潮中,车载时钟系统的精度与可靠性正成为决定整车性能的核心命脉。作为电子架构的"精准心跳之源",车规级晶振的选型直接影响ADAS感知、实时通信、动力控制等关键功能的稳定性。面对严苛路况、极端温差及十年以上的生命周期挑战,工程师亟需兼具高稳定性与强抗干扰能力的时钟解决方案——小扬科技将聚焦车规级晶体/晶振核心参数,3分钟助您精准锁定最优型号。
在技术创新的浪潮中,图像传感器的选型是设计与开发各类设备(涵盖专业与家庭安防系统、机器人、条码扫描仪、工厂自动化、设备检测、汽车等)过程中的关键环节。选择最适配的图像传感器需要对众多标准进行复杂的综合评估,每个标准都直接影响最终产品的性能和功能。从光学格式(Optical Format)和动态范围(Dynamic Range),到色彩滤波阵列(CFA)、像素类型、功耗及特性集成,这些考量因素多样且相互交织、错综复杂。
压控晶振(VCXO)作为频率调控的核心器件,已从基础时钟源升级为智能系统的"频率舵手"。通过变容二极管与石英晶体的精密耦合,实现电压-频率的线性转换,其相位噪声控制突破-160dBc/Hz@1kHz,抖动进入亚纳秒时代(0.15ps)。在5G-A/6G预研、224G光通信及自动驾驶多传感器同步场景中,VCXO正经历微型化(2016封装)、多协议兼容(LVDS/HCSL/CML集成)及温漂补偿算法的三重技术迭代。
在电子设备的精密计时体系中,晶体振荡器与实时时钟芯片如同时间系统的"心脏"与"大脑":晶振通过石英晶体的压电效应产生基础频率脉冲,为系统注入精准的"生命节拍";而实时时钟芯片则承担时序调度中枢的角色,将原始频率转化为可追踪的年月日时分秒,并实现闹钟、断电计时等高级功能。二者协同构建现代电子设备的"时间维度"。