发布时间:2021-08-16 阅读量:2169 来源: 我爱方案网 作者: 雕塑者
MOS管规格书中有三个寄生电容参数,分别是:输入电容Ciss、输出电容Coss、反向传输电容Crss。该三个电容参数具体到管子的本体中,分别代表什么?是如何形成的?
功率半导体的核心是PN结,从二极管、三极管到场效应管,都是根据PN结特性所做的各种应用。场效应管分为结型、绝缘栅型,其中绝缘栅型也称MOS管(MetalOxideSemiconductor)。
根据不通电情况下反型层是否存在,MOS管可分为增强型、耗尽型——
寄生电容形成的原因
1.势垒电容:功率半导体中,当N型和P型半导体结合后,由于浓度差导致N型半导体的电子会有部分扩散到P型半导体的空穴中,因此在结合面处的两侧会形成空间电荷区(该空间电荷区形成的电场会阻值扩散运动进行,最终使扩散运动达到平衡);
2.扩散电容:当外加正向电压时,靠近耗尽层交界面的非平衡少子浓度高,远离非平衡少子浓度低,且浓度自高到底逐渐衰减直到0。当外加正向电压增大时,非平衡少子的浓度增大且浓度梯度也增大,外加电压减小时,变化相反。该现象中电荷积累和释放的过程与电容器充放电过程相同,称为扩散电容。
MOS管寄生电容结构如下,其中,多晶硅宽度、沟道与沟槽宽度、G极氧化层厚度、PN结掺杂轮廓等都是影响寄生电容的因素。
对于MOS管规格书中三个电容参数的定义,
输入电容Ciss=Cgs+Cgd;
输出电容Coss=Cds+Cgd;
反向传输电容Crss=Cgd。
这三个电容几乎不受温度变化的影响,因此,驱动电压、开关频率会比较明显地影响MOS管的开关特性,而温度的影响却比较小。
作者介绍:雕塑者(笔名),一名乐于开源文化的工程师,个人公众号【硬件大熊】。后续原创技术应用笔记还将在我爱方案网上线,敬请期待!
来源:我爱方案网
版权声明:本文为博主原创,未经本人允许,禁止转载。
在汽车电子智能化、网联化与电动化深度融合的浪潮中,车载时钟系统的精度与可靠性正成为决定整车性能的核心命脉。作为电子架构的"精准心跳之源",车规级晶振的选型直接影响ADAS感知、实时通信、动力控制等关键功能的稳定性。面对严苛路况、极端温差及十年以上的生命周期挑战,工程师亟需兼具高稳定性与强抗干扰能力的时钟解决方案——小扬科技将聚焦车规级晶体/晶振核心参数,3分钟助您精准锁定最优型号。
在技术创新的浪潮中,图像传感器的选型是设计与开发各类设备(涵盖专业与家庭安防系统、机器人、条码扫描仪、工厂自动化、设备检测、汽车等)过程中的关键环节。选择最适配的图像传感器需要对众多标准进行复杂的综合评估,每个标准都直接影响最终产品的性能和功能。从光学格式(Optical Format)和动态范围(Dynamic Range),到色彩滤波阵列(CFA)、像素类型、功耗及特性集成,这些考量因素多样且相互交织、错综复杂。
压控晶振(VCXO)作为频率调控的核心器件,已从基础时钟源升级为智能系统的"频率舵手"。通过变容二极管与石英晶体的精密耦合,实现电压-频率的线性转换,其相位噪声控制突破-160dBc/Hz@1kHz,抖动进入亚纳秒时代(0.15ps)。在5G-A/6G预研、224G光通信及自动驾驶多传感器同步场景中,VCXO正经历微型化(2016封装)、多协议兼容(LVDS/HCSL/CML集成)及温漂补偿算法的三重技术迭代。
在电子设备的精密计时体系中,晶体振荡器与实时时钟芯片如同时间系统的"心脏"与"大脑":晶振通过石英晶体的压电效应产生基础频率脉冲,为系统注入精准的"生命节拍";而实时时钟芯片则承担时序调度中枢的角色,将原始频率转化为可追踪的年月日时分秒,并实现闹钟、断电计时等高级功能。二者协同构建现代电子设备的"时间维度"。
无人机已不再是简单的飞行器,而是集成了尖端感知与决策能力的空中智能载体。其核心系统——特别是自主导航与感知技术——是实现其在测绘、巡检、农业、物流、安防等多个领域高效、精准作业的关键。本文将深入剖析无人机如何通过这些核心技术“看见”、“思考”并“规划”路径,实现真正意义上的自主飞行能力。