发布时间:2021-05-28 阅读量:2195 来源: 我爱方案网 作者: 雕塑者
本周在技术交流群中有群友抛出这么一个问题:反激电源MOSD-S之间电压波形产生的原因?
这是一个典型的问题,本质原因就是功率级寄生电容、电感引起的谐振,然而几天后我发现,当时我并没有充分理解问题,这位朋友所要了解的问题其实应细化为:为什么会有两次谐振,谐振产生的模型是怎样的?
如下为反激式电源实现方案,该方案采用初级侧稳压(PSR)技术,
Q1导通时,变压器初级电感存储能量,输出续流二极管Dfly反向偏置,Cout输出能量给负载;
Q1关断时,变压器初级线圈释放能量,输出续流二极管正向偏置,向输出端提供电能;
开关电源产生振铃的主要原因在于非理想器件存在功率级寄生电容、电感。所谓谐振,即:在MOS管开通、关断切换的过程中,寄生电感将能量传递给寄生电容进行充电,充电结束后寄生电容又释放电能给寄生电感储能,如此循环往复。
群友发出的图片中,有2次谐振,
第一次谐振
该谐振产生的时间点在MOS管关断的瞬间,等效谐振电路如下:
Loop:初次级间的漏电感、初级励磁电感、功率MOSFET封装电感之和
Coss:MOS管寄生电容、线路寄生电容
第二次谐振
这是开关电源DCM模式特有的一个振铃现象,
此处你必须要了解开关电源电感如下两种模式:
CCM:连续导通模式,次级端反射电流在MOS通断,变压器线圈换相期间不会到达0;
DCM:断续导通模式,次级端反射电流在MOS通断,变压器线圈换相期间到达0。
在DCM模式下,当MOS管关断,且在次级反射电流消耗为0之前,次级线圈输出相位的电压高于实际输出电压;当反射电流消耗为0,即次级线圈电流消耗为0时,实际输出电压由输出电容提供,此时次级输出相位的电压等于0,在次级输出相位电压由高于输出电压到等于0的变化过程中,会出现电压的衰减振荡,而该衰减振荡会耦合到初级线圈并加载在MOS与线圈连接的开关节点处。
由于该谐振给MOS管的寄生电容充电,若MOS在此时导通,则可能碰到寄生电容电位被充到较高的时刻,此时寄生电容所充电的能量若被直接导到GND会造成MOS管的导通损耗,针对该问题,诞生出了准谐振技术,即:DCM模式下,初级侧MOS在开关节点谐振电压摆幅的谷底附近导通。
作者介绍:雕塑者(笔名),一名乐于开源文化的工程师,个人公众号【硬件大熊】。后续原创技术应用笔记还将在我爱方案网上线,敬请期待!
来源:我爱方案网
版权声明:本文为博主原创,未经本人允许,禁止转载
【小知识】时钟芯片一种高性能、低功耗、带RAM的实时时钟电路,英文名称:Real-time Clock/Calendar Chip(简称:RTC),可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能。采用IIC通信接口。
晶振作为电子设备的"心跳发生器",其起振状态直接决定系统能否正常运行。本文深度解析四种检测方法的实战要点:示波器法需规避探头电容引发的停振风险,万用表电压法需警惕芯片故障导致的误判,频率计通过波形特征精准锁定起振状态,而听声辨振实为认知误区——人耳可闻的异常声响反而暴露晶振缺陷。随着5G/新能源产业爆发式增长,国产晶振厂商正加速技术攻坚,保障起振检测的可靠性已成为行业刚需。
可编程晶振改变频率的核心原理是:通过内部集成的锁相环(PLL)和数字分频/倍频电路,对基础石英晶体产生的固定频率进行精密的数学运算(分频、倍频、分数分频),最终输出一个用户通过数字接口(如I²C、SPI)编程设定的目标频率。
晶振是电路中可以提供高度稳定时钟信号的元器件。通常一个系统共用一个晶振,便于各部分保持同步,一起“干大事”。比如在我们常用的计算机系统中,晶振可比喻为各板卡的“心跳”发生器,如果主卡的“心跳”出现问题,必定会使其他各电路出现故障。人体的心跳搏动,离不开血液。晶振也是一样,离不开电流。
晶振自身产生时钟信号,为各种微处理芯片作时钟参考,晶振相当于这些微处理芯片的心脏,没有晶振,这些微处理芯片将无法工作。晶振的作用就是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。晶振主要运用于单片机、DSP、ARM、PowerPC、CPLD/FPGA等CPU,以及PCI接口电路、CAN接口电路等通讯接口电路。