发布时间:2021-04-28 阅读量:1900 来源: 发布人: Viva
作者:安森美半导体工业及云电源公司营销及战略高级经理Ali Husain
国际能源署(IEA)估计,电机功耗占世界总电力的45%以上。因此,找到最大化其运行能效的方法至关重要。能效更高的驱动装置可以更小,并且更靠近电机,从而减少长电缆带来的挑战。从整体成本和持续可靠性的角度来看,这将具有现实意义。宽禁带(WBG)半导体技术的出现将有望在实现新的电机能效和外形尺寸基准方面发挥重要作用。
使用WBG材料如碳化硅(SiC)可制造出性能超越硅(Si)的同类产品。虽然有各种重要的机会使用这项技术,但工业电机驱动正获得最大的兴趣和关注。
SiC的高电子迁移率使其能够支持更快的开关速度。这些更快的开关速度意味着相应的开关损耗也将减少。它的介电击穿场强几乎比硅高一个数量级。这能实现更薄的漂移层,这将转化为更低的导通电阻值。此外,由于SiC的导热系数是Si的三倍,因此在散热方面要高效得多。因此,更容易减小热应力。
传统的高压电机驱动器会采用三相逆变器,其中Si IGBT集成反并联二极管。三个半桥相位驱动逆变器的相应相线圈,以提供正弦电流波形,随后使电机运行。逆变器中浪费的能量将来自两个主要来源-导通损耗和开关损耗。用基于SiC的开关代替Si基开关,可减小这两种损耗。
SiC肖特基势垒二极管不使用反并联硅二极管,可集成到系统中。硅基二极管有反向恢复电流,会造成开关损耗(以及产生电磁干扰,或EMI),而SiC二极管的反向恢复电流可忽略不计。这使得开关损耗可以减少达30%。由于这些二极管产生的EMI要低得多,所以对滤波的需求也不会那么大(导致物料清单更小)。还应注意,反向恢复电流会增加导通时的集电极电流。由于SiC二极管的反向恢复电流要低得多,在此期间通过IGBT的峰值电流将更小,从而提高运行的可靠性水平并延长系统的使用寿命。
因此,如果要提高驱动效率及延长系统的工作寿命时,迁移到SiC肖特基显然是有利的。那么我们何以采取更进一步的方案呢?如果用SiC MOSFET取代负责实际开关功能的IGBT,那么能效的提升将更显著。在相同运行条件下,SiC MOSFET的开关损耗要比硅基IGBT低五倍之多,而导通损耗则可减少一半之多。
WBG方案的其他相关的好处包括大幅节省空间。SiC提供的卓越导热性意味着所需的散热器尺寸将大大减少。使用更小的电机驱动器,工程师可将其直接安装在电机外壳上。这将减少所需的电缆数量。
安森美半导体现在为工程师提供与SiC二极管共同封装的IGBT。此外,我们还有650V、900V和1200V额定值的SiC MOSFET。采用这样的产品,将有可能变革电机驱动,提高能效参数,并使实施更精简。
【小知识】时钟芯片一种高性能、低功耗、带RAM的实时时钟电路,英文名称:Real-time Clock/Calendar Chip(简称:RTC),可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能。采用IIC通信接口。
晶振作为电子设备的"心跳发生器",其起振状态直接决定系统能否正常运行。本文深度解析四种检测方法的实战要点:示波器法需规避探头电容引发的停振风险,万用表电压法需警惕芯片故障导致的误判,频率计通过波形特征精准锁定起振状态,而听声辨振实为认知误区——人耳可闻的异常声响反而暴露晶振缺陷。随着5G/新能源产业爆发式增长,国产晶振厂商正加速技术攻坚,保障起振检测的可靠性已成为行业刚需。
可编程晶振改变频率的核心原理是:通过内部集成的锁相环(PLL)和数字分频/倍频电路,对基础石英晶体产生的固定频率进行精密的数学运算(分频、倍频、分数分频),最终输出一个用户通过数字接口(如I²C、SPI)编程设定的目标频率。
晶振是电路中可以提供高度稳定时钟信号的元器件。通常一个系统共用一个晶振,便于各部分保持同步,一起“干大事”。比如在我们常用的计算机系统中,晶振可比喻为各板卡的“心跳”发生器,如果主卡的“心跳”出现问题,必定会使其他各电路出现故障。人体的心跳搏动,离不开血液。晶振也是一样,离不开电流。
晶振自身产生时钟信号,为各种微处理芯片作时钟参考,晶振相当于这些微处理芯片的心脏,没有晶振,这些微处理芯片将无法工作。晶振的作用就是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。晶振主要运用于单片机、DSP、ARM、PowerPC、CPLD/FPGA等CPU,以及PCI接口电路、CAN接口电路等通讯接口电路。