发布时间:2021-01-26 阅读量:2576 来源: 我爱方案网 作者: 雕塑者
单片机的基准电压一般为3.3V,如果外部信号超过了AD测量范围,采用电阻分压是最为简单的一种方法,然而很多时候你会在阻抗匹配的问题上“踩坑”。比如,SMT32的模数输入阻抗约为10K,如果外接的分压电阻无法远小于该阻值,则会因为信号源输出阻抗较大,AD的输入阻抗较小,从而输入阻抗对信号源信号的电压造成分压,最终导致电压读取误差较大。这样的情况会导致你测量电压的时候,发现有些电压点好像测的挺准,而有些电压点测量的偏差却又很大。
考虑阻抗匹配的问题,对于使用单片机读取外部信号电压,外接分压电阻必须选用较小的电阻,但在对功耗有要求的情况下,你不得不选用大阻值的电压分压后,这时候则需要使用电压跟随器进行阻抗匹配(电压跟随器输入阻抗可达到几兆欧姆,输出阻抗为几欧姆甚至更小)。如果信号源的输出阻抗较大,可采用电压跟随器匹配后再接电阻分压。
当然,你也可以选择外置的ADC芯片,但是在选型时,要留意其类型(SAR型、开关电容型、FLASH型、双积分型、Sigma-Delta型),不同类型的ADC芯片输入阻抗不同。常见的Sigma-Delta型是目前精度最高的ADC类型,也属于开关电容型输入,其所需要注意的问题相对比较多。
1、测量范围问题:SigmaDelta型ADC属于开关电容型输入,必须有低阻源。所以为了简化外部设计,内部大多集成有缓冲器。缓冲器打开,则对外呈现高阻,使用方便。但要注意了,缓冲器实际是个运放。那么必然有上下轨的限制。大多数缓冲器都是下轨50mV,上轨AVCC-1.5V。在这种应用中,共莫输入范围大大的缩小,而且不能到测0V。一定要特别小心!一般用在电桥测量中,因为共模范围都在1/2VCC附近。不必过分担心缓冲器的零票,通过内部校零寄存器很容易校正的;
2、输入端有RC滤波器的问题:SigmaDelta型ADC属于开关电容型输入,在低阻源上工作良好。但有时候为了抑制共模或抑制乃奎斯特频率外的信号,需要在输入端加RC滤波器,一般DATASHEET上会给一张最大允许输入阻抗和C和Gain的关系表。这时很奇怪的一个特性是,C越大,则最大输入阻抗必须随之减小!刚开始可能很多人不解,其实只要想一下电容充电特性久很容易明白的。还有一个折衷的办法是,把C取很大,远大于几百万倍的采样电容Cs(一般4~20PF),则输入等效纯电阻,分压误差可以用GainOffset寄存器校正;
3、运放千万不能和SigmaDelta型ADC直连!前面说过,开关电容输入电路电路周期用采样电容从输入端采样,每次和运放并联的时候,会呈现低阻,和运放输出阻抗分压,造成电压下降,负反馈立刻开始校正,但运放压摆率(SlewRate)有限,不能立刻响应。于是造成瞬间电压跌落,取样接近完毕时,相当于高阻,运放输出电压上升,但压摆率使运放来不及校正,结果是过冲。而这时正是最关键的采样结束时刻。所以,运放和SD型ADC连接,必须通过一个电阻和电容连接(接成低通)。而RC的关系又必须服从datasheet所述规则;
4、差分输入和双极性的问题:SD型ADC都可以差分输入,都支持双极性输入。但这里的双极性并不是指可以测负压,而是Vi+ Vi-两脚之间的电压。假设Vi-接AGND,那么负压测量范围不会超过-0.3V。正确的接法是Vi+ Vi- 共模都在-0.3~VCC之间差分输入。一个典型的例子是电桥。另一个例子是Vi-接Vref,Vi+对Vi-的电压允许双极性输入
作者介绍:雕塑者(笔名),一名乐于开源文化的工程师,个人公众号【硬件大熊】。后续原创技术应用笔记还将在我爱方案网上线,敬请期待!
来源:我爱方案网
版权声明:本文为博主原创,未经本人允许,禁止转载!
在技术创新的浪潮中,图像传感器的选型是设计与开发各类设备(涵盖专业与家庭安防系统、机器人、条码扫描仪、工厂自动化、设备检测、汽车等)过程中的关键环节。选择最适配的图像传感器需要对众多标准进行复杂的综合评估,每个标准都直接影响最终产品的性能和功能。从光学格式(Optical Format)和动态范围(Dynamic Range),到色彩滤波阵列(CFA)、像素类型、功耗及特性集成,这些考量因素多样且相互交织、错综复杂。
压控晶振(VCXO)作为频率调控的核心器件,已从基础时钟源升级为智能系统的"频率舵手"。通过变容二极管与石英晶体的精密耦合,实现电压-频率的线性转换,其相位噪声控制突破-160dBc/Hz@1kHz,抖动进入亚纳秒时代(0.15ps)。在5G-A/6G预研、224G光通信及自动驾驶多传感器同步场景中,VCXO正经历微型化(2016封装)、多协议兼容(LVDS/HCSL/CML集成)及温漂补偿算法的三重技术迭代。
在电子设备的精密计时体系中,晶体振荡器与实时时钟芯片如同时间系统的"心脏"与"大脑":晶振通过石英晶体的压电效应产生基础频率脉冲,为系统注入精准的"生命节拍";而实时时钟芯片则承担时序调度中枢的角色,将原始频率转化为可追踪的年月日时分秒,并实现闹钟、断电计时等高级功能。二者协同构建现代电子设备的"时间维度"。
无人机已不再是简单的飞行器,而是集成了尖端感知与决策能力的空中智能载体。其核心系统——特别是自主导航与感知技术——是实现其在测绘、巡检、农业、物流、安防等多个领域高效、精准作业的关键。本文将深入剖析无人机如何通过这些核心技术“看见”、“思考”并“规划”路径,实现真正意义上的自主飞行能力。
压控晶体振荡器(Voltage-Controlled Crystal Oscillator, VCXO)是一种关键的高精度频率源,其核心特性在于能够通过施加外部控制电压来精细调节其输出频率。其频率控制过程依赖于精密的电路设计和晶体的独特物理特性,主要涉及以下核心原理: