发布时间:2021-01-11 阅读量:967 来源: 电子工程网 发布人: Viva
人工智能(AI)是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
但随着AI从云到边缘的发展,使得这一观点正在迅速改变,AI计算引擎使MCU能够突破嵌入式应用可能的极限,嵌入式设计已经能够提高网络攻击的实时响应能力和设备安全性。
支持AI的MCU
云计算推动了对具有AI功能的MCU的需求;它减少了数据传输所需的带宽,并节省了云服务器的处理能力,如下图
配备AI算法的MCU正在应用包含对象识别,启用语音服务和自然语言处理等功能的应用程序。它们还有助于提高物联网(IoT),可穿戴设备和医疗应用中电池供电设备的准确性和数据隐私性。
那么,MCU如何在边缘和节点设计中实现AI功能?下面简要介绍了三种基本方法,这些方法使MCU能够在IoT网络边缘执行AI加速。
三个MCU + AI场合
第一种方法(可能是最常见的方法)涉及各种神经网络(NN)框架(例如Caffe 2,TensorFlow Lite和Arm NN)的模型转换,用于在MCU上部署云训练的模型和推理引擎。有一些软件工具可以从云中获取经过预训练的神经网络,并通过将其转换为C代码来针对MCU进行优化。
在MCU上运行的优化代码可以在语音,视觉和异常检测应用程序中执行AI功能。工程师可以将这些工具集下载到MCU配置中,并运行优化神经网络的推论。这些AI工具集还提供了基于神经网络的AI应用程序的代码示例。
AI执行模型转换工具可以在低成本和低功耗MCU上运行优化神经网络的推论,如下图所示。
第二种方法是绕过了对从云借用的预训练神经网络模型的需求,设计人员可以将AI库集成到微控制器中,并将本地AI培训和分析功能纳入其代码中。
随后开发人员可以基于从边缘的传感器,麦克风和其他嵌入式设备获取的信号来创建数据模型,并运行诸如预测性维护和模式识别之类的应用程序。
第三种方法是AI专用协处理器的可用性使MCU供应商能够加快机器学习功能的部署。诸如Arm Cortex-M33之类的协处理器利用了诸如CMSIS-DSP之类的流行API来简化代码的可移植性,从而使MCU与协处理器紧密耦合,可加快AI功能,如协处理相关和矩阵运算。
美国为防止高端人工智能(AI)芯片通过第三方渠道流入中国,已秘密要求芯片制造商英伟达(NVIDIA)、超威半导体(AMD)等企业在出口至部分国家的AI芯片中植入追踪程序,以便实时监控芯片流向
在电子电路设计中,晶振的每一项参数都与产品命运息息相关——哪怕只差0.1ppm,也可能让整板“翻车”。看似最基础的术语,正是硬件工程师每天必须跨越的隐形门槛。
在电子电路设计中,晶振的每一项参数都与产品命运息息相关——哪怕只差0.1ppm,也可能让整板“翻车”。看似最基础的术语,正是硬件工程师每天必须跨越的隐形门槛。
电路板中常用到恒温与温补这两种晶振,恒温晶振与温补晶振都属于晶体振荡器,既有源晶振,所以组成的振荡电路都需要电源加入才能工作
汽车电子系统日益复杂,尤其在48V架构、ADAS与电控系统普及的当下,对瞬态电压抑制器(TVS)的功率密度、高温耐受性及小型化提出了严苛挑战。传统大功率TVS往往体积庞大,难以适应紧凑的ECU布局。威世科技(Vishay)日前推出的T15BxxA/T15BxxCA系列PAR® TVS,以创新封装与卓越性能直面行业痛点,为下一代汽车设计注入强大保护能力。