发布时间:2020-11-30 阅读量:1708 来源: 我爱方案网 作者: 雕塑者
所有的电容式触摸的核心都是一组与电场相互作用的导体。
人体组织的皮肤是一种有损电解质,相当于导电电极,在简单的平行片电容中间隔着一层电介质,该系统中的大部分能量聚集在电容器极板之间,少许的能量会溢出到电容器极板以外的区域,当手指放在电容触摸系统时,相当于放置于能量溢出区域(称为:边缘场),并将增加该电容系统的导电表面积。
电容感应的方法分为两种:自电容感应和互电容感应技术
自电容感应技术
自电容使用一个引脚,并测量该引脚和电源地之间的电容。即:驱动与传感器相连的引脚上的电流,由于将手指放在传感器上,其系统的电容会增加,因此其电压也会增加,实测电压的变化即可检测是否有手指进行触摸。这种技术一般用于单点触摸或滑条。
互电容感应
互电容感应技术使用两个电容,一个为发送电极、一个为接收电极,TX引脚提供数字电压,并测量RX引脚上所接收到的电荷,在RX电极上接收到的电荷与两个电极间的互电容成正比,当TX和RX电极间放置手指时,互电容降低,因此RX电极上接收到的电荷也会降低。由此通过检测RX电极上的电荷检测触摸/无触摸状态。
根据传感器感应的维度,大致可以分为:按键传感器(0维)、滑条传感器(1维)、触摸板传感器(2维)、接近感应传感器(3维)
零维传感器
零维传感器在白色家电、照明控制等领域有众多的应用,其输出两种状态:有手指触摸、无手指触摸,如通过一根走线连接到控制器引脚的简单按键。
当需要大量按键时,如计算器的键盘等,可以将电容传感器排列成一个矩阵
一维传感器
一维传感器也称滑条传感器,适用于需要渐进式调节的控制应用,如照明调光、音量控制、图示均衡器等,一个滑条传感器由一系列称为段的电容传感器构成,某一个段的动作会导致邻近其他传感器的部分动作,通过插值算法的中心位置计算方式可以使触摸位置分辨率大于滑条段数量。
线性滑条,每个IO引脚连接一个滑条段
双工滑条,每个IO引脚连接两个不同的滑条段
辐射滑条,这种类型的滑条具备连续性,没有起点或终点
两维传感器
如触摸屏和触控板,通过按X和Y模式设置的线性滑条,可以确定手指的位置
三维传感器
接近感应传感器在手或其他导体靠近的时候就能检测到,实现接近感应的一种方法是围着用户界面铺上一条长走线,该走线可在大范围内感应电容的变化,由此使得系统对用户的触摸感应显得更加快速
在高精度雷达和导航应用领域中,时钟稳定性和精准定位是两大关键因素。由于雷达系统需要精确测量目标的距离、速度和方位,而导航系统则要求高精度地确定位置和规划路径,因此这些应用都对时钟信号的精度提出了极高要求。
当指尖划过屏幕成为数字时代的基础语言,触控技术正在书写人机交互的新篇章。Canalys最新数据显示,全球PC市场在2024年实现3.9%的企稳增长后,2025年将迎来AI PC换机潮与Windows 10停服的双重催化,预计触控设备市场规模将突破百亿美元。在这场交互革命中,触控板已从外围配件进化为生产力核心组件——更精准的轨迹捕捉、更具实感的力度反馈、更智慧的生物识别,正在重新定义"指尖生产力"的边界。兆易创新凭借在电容触控领域十余年的技术积淀,以GSM3765/3766芯片组为支点,撬动这场触觉体验的全面升级。
在工业4.0向工业5.0跨越的进程中,自主移动机器人(AMR)正从“效率工具”蜕变为“智慧伙伴”。随着制造业对“以人为本”和“可持续性”的追求升级,AMR的设计核心已从单纯的自动化转向安全性与人机协作的深度融合。然而,高速移动的机械臂、复杂环境中的动态障碍物,以及突发外力冲击,仍对工人安全和设备稳定性构成挑战。如何在提升生产力的同时,让AMR像人类一样“感知风险、快速决策”?安森美(onsemi)通过传感、运动控制与智能照明的系统性创新,为这一难题提供了前瞻性答案。
在万物互联的时代,传感器如同数字世界的“末梢神经”,悄然推动着智能生活的每一次革新。作为MEMS气压传感器领域的革新力量,兆易创新正以颠覆性技术突破行业边界——从实现水下100米精准测量的防水型GDY1122,到功耗低至微安级的节能标杆GDY1121,其产品矩阵以“高精度、高集成、高灵敏度”的硬核实力,攻克复杂环境下的感知难题。在慕尼黑上海电子展的聚光灯下,这家中国芯片企业不仅展示了10ATM防水等级的尖端方案,更通过“3高1低1优”战略,将MEMS传感器推向智能穿戴、工业监测、应急救援等领域的核心舞台。
在各种电子设备中,晶振作为时钟信号的核心元件,其精度直接决定了系统的稳定性。由于石英晶体及周边电路元件受温度变化影响会发生热膨胀和参数漂移,晶振的频率往往随温度波动而偏移,从而影响整体性能。