发布时间:2020-11-26 阅读量:688 来源: 我爱方案网 作者: 我爱方案网
在数控机床的加工中,伺服系统为了同时满足高速快移和单步点动,要求进给驱动具有足够宽的调速范围。单步点动作为一种辅助工作方式常常在工作台的调整中使用。伺服系统在低速情况下实现平稳进给,则要求速度必须大于“死区”范围。
所谓“死区”指的是由于静摩擦力的存在使系统在很小的输入下,电机克服不了这摩擦力而不能转动。此外,还由于存在机械间隙,电机虽然转动,但拖板并不移动,这些现象也可用“死区”来表达。设死区范围为a,则最低速度Vmin,应满足Vmin≥a,由于a≤dK,d为脉冲当量(mm/脉冲);K为开环放大倍数,则:Vmin≥dK。若取d=0.01mm/脉冲,K=30×1/S,则最低速度Vmin≥a=30×0.01mm/min=18mm/min。伺服系统最高速度的选择要考虑到机床的机械允许界限和实际加工要求,高速度固然能提高生产率,但对驱动要求也就更高。
此外,从系统控制角度看也有一个检测与反馈的问题,尤其是在计算机控制系统中,必须考虑软件处理的时间是否足够。由于fmax=fmax/d式中:fmax为最高速度的脉冲频率,kHz;vmax为最高进给速度,mm/min;d为脉冲当量,mm。又设D为调速范围,D=vmax/vmin,得fmax=Dvmin/d=DKd/d=DK则为最小的间隔时间tmin,即tmin=1/DK。显然,系统必须在tmin内通过硬件或软件完成位置检测与控制的操作。对最高速度而言,vmax的取值是受到tmin的约束。一个较好的伺服系统,调速范围D往往可达到800~1000。当今最先进的水平是在脉冲当量d=1µm的条件下,进给速度从0~240m/min范围内连续可调。
反馈电阻器决定了振荡电路的偏置情况。通常情况下,C-MOS集成电路使用的反馈电阻在100KΩ~10MΩ之间(通常为1MΩ),而TTL集成电路使用的反馈电阻则在1KΩ~10KΩ之间(通常为4.7KΩ),其原因是TTL集成电路的I/O阻抗低。如果反馈电阻太大,反馈量就会减少,造成工作点不稳定。如果反馈电阻太小,会导致增益减少或电流增加。目前,大多数集成电路都使用了反馈电阻器。
阻尼电阻器和加载电容器可以充当低通滤波器,通过减少高频范围内的增益来抑制异常谐振荡。此外,也可以限制集成电路增益,让陶瓷谐振器更好的与集成电路相匹配,从而来抑制无用振铃、过冲、下冲。在kHz频带内,阻尼电阻应为几千欧,而在MHz频带内,阻尼电阻应在几十欧至几百欧之间。可以任选阻尼电阻器。
CL1/CL2加载电容器,对于确定振荡电路的稳定性,此参数至关重要。如果负载电容过小,振荡波形就会变形,导致不稳定振荡。相反,如果负载电容过大,振荡就会停止。与相同集成电路比较,振荡电路会产生较低的频率,需要较大的静电容量。如果集成电路增益过大或采用TTL、三相缓冲集成电路,为了减少集成电路增益或抑制不稳定振荡,可以使用偏置电阻器有目的地改变偏置点。C-MOS集成电路使用阻值为1MΩ至10MΩ的偏置电阻器,TTL使用1KΩ至10KΩ的偏置电阻器。对于不同的集成电路和陶瓷谐振器,常数也不同。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。
随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。
对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。
在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。
其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!