发布时间:2020-08-26 阅读量:846 来源: 互联网 发布人: Viva
日本 NTT 集团旗下设备技术实验室研发了磷化锢(InP)化合物半导体制造的 6G 超高速芯片,并在 300GHz 频段进行了高速无线传输实验,当采用 16QAM 调制时可达到 6G 的峰值速率 100Gbps。由于 100Gbps 无线传输速率仅由一个载波实现,未来将拓展到多个载波,以及使用 MIMO 和 OAM 等空间复用技术。通过这种组合,可以预期超高速集成电路将支持超过 400Gpbs 的大容量无线传输,将是 5G 技术的 40 倍。
但是,研发快不代表应用快,日前日本政府才正式开始接受 5G 专网服务频谱牌照申请。该技术预期将开启通信和非通信领域未使用的太赫兹频段的使用,例如成像和传感。NTT 表示,希望能带来使用超高速集成电路的新服务和产业,并进一步推进技术发展。
高符号率和多层调制技术由于可增加无线通信系充的容量正引起业界关注。超高速芯片是技术驱动力尤其是在太赫兹频段无线通信系统中的高符号率和多层调制方面。NTT Docomo 等大型电信运营商将从明年春天开始提供 5G 服务,预计其服务区域最初将主要覆盖大城市。
通过允许地方政府和企业在农村地区建设自己的网络,日本中央政府预计地方企业将很快开始使用 5G 网络。在农村地区,主要电信运营商的基站建设速度可能没那么快。
5G的发展主要有两个驱动力。一方面以长期演进技术为代表的第四代移动通信系统4G已全面商用,对下一代技术的讨论提上日程;另一方面,移动数据的需求爆炸式增长,现有移动通信系统难以满足未来需求,急需研发新一代5G系统。5G的发展也来自于对移动数据日益增长的需求。
6G,即5G之后的延伸,第六代移动通信标准,也被称为第六代移动通信技术,主要促进的就是物联网的发展。6G基站可同时接入数百个甚至数千个无线连接,其容量可达5G基站的1000倍。2019年3月19日,美国联邦通信委员会(FCC)决定开放面向未来6G网络服务的“太赫兹”频谱,用于创新者开展6G技术试验。
6G网络将是一个地面无线与卫星通信集成的全连接世界。通过将卫星通信整合到6G移动通信,实现全球无缝覆盖,网络信号能够抵达任何一个偏远的乡村,让深处山区的病人能接受远程医疗,让孩子们能接受远程教育。此外,在全球卫星定位系统、电信卫星系统、地球图像卫星系统和6G地面网络的联动支持下,地空全覆盖网络还能帮助人类预测天气、快速应对自然灾害等。这就是6G未来,不再是简单的网络容量和传输速率的突破,更是为了缩小数字鸿沟,实现万物互联这个终极目标。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。
随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。
对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。
在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。
其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!