按键控制延时灯电路方案设计

发布时间:2020-01-9 阅读量:782 来源: 我爱方案网 作者:

自激多谐振荡器是一种无稳态电路,但是有两个维持不能长久的暂稳态,因而能够不断地进行转化而形成振荡。这个例子介绍的是由与非门构成的RC微分型单稳态电路。所谓单稳态电路,即有一个稳定状态 和一个暂时稳定状态,在输入信号的控制下,能够由稳态转变为暂稳态,经过一定时间后又自动返回到稳定状态,暂稳态的持续时间由元件参数来决定。 电路原理图如下图所示。它由与非门IC1A、IC1B和C2、R4等微分电路组成单稳态电路,由按钮开关S1和C1等组成负脉冲触发信号电路,由 LED1、R5组成显示电路。当电源刚接通,且S1尚未闭合时,电源通过电阻R1 和R3向电容C1充电,C1左端为正,R2和R3组成分压电路,使得IC1A的输入 端第1脚得到电源电压的1/2,也就是3V左右的电压,高于IClA的转换电压 而此时ICIB的第6脚接在电源正极上,第6脚为高电平,第5脚由于通过电阻 R4接地,所以第5脚为低电平,故C1B此时输出端第4脚为高电平,该高电平 同时加载至IC1A的第2脚,故与非门IC1A的输出端第3脚为低电平。

按键控制延时灯电路方案设计1.png 

 

当按钮开关S1闭合时,在C1上已经充满的电荷通过电阻R3放电,在R3上的放电电流方向是自下而上,与原作为分压电路的电流方向自上而下相反,因 此在IC1A的第1脚得到了一个负向尖顶脉冲信号,此时IC1A输出的第3脚将变 为高电平,该高电平通过C2送至IC1B的第5脚,由于电容两端电压不能突变, 所以IC1B的第5脚也为高电平,第4脚将变为低电平,驱动LED1点亮,电路 将从稳态变为暂稳态。随着C2不断充电,IC1B的第5脚电压将逐渐降低,达到IC1B的翻转电位后,第4脚将恢复为高电平,LED1熄灭,电路恢复到稳定状态。这个微分型的单稳态电路的输出脉冲宽度为确定值,即IC1A触发后持续输出高电平的时间是固定值,而LED1的持续点亮时间将由定时元件C2和R4决 定。其延时时间的计算公式为

 

按键控制延时灯电路方案设计2.png 

 

一般来说,R4的取值范围相对较小,C的取值范围可以大些。

 

保证电路设计信号完整可靠,你需要正确的时序设计许多模拟电路需要一种时钟信号,或者要求能在一定时间后执行某项任务。对于这样的应用,有各种各样适用的解决方案。对于简单的时序任务,可以使用标准的555电路。使用555电路和适当的外部组件,可以执行许多不同的任务。 然而,使用相当广泛的555定时器有一个缺点,就是设置不太精确。555定时器通过给外部电容充电和检测电压阈值来工作。这种电路很容易制作,但它的精度很大程度上取决于其电容的实际值。晶体振荡器适用于精度要求较高的应用。它们的精度可能很高,但它们有一个缺点:可靠性。参与电气设备维修的人都知道,故障通常是由大型电解电容引起的。晶体振荡器是引起故障的第二大原因。第三种测量时间长度或生成时钟信号的方法是使用一个简单的小型微控制器。当然,可供选择的器件数量繁多,且可以选择各自不同的优化方法。但是,这些器件需要编程,用户需要掌握一定的知识才能使用它;此外,由于其采用数字设计,在关键应用中使用时,必须非常小心谨慎。例如,如果微控制器发生故障,整个系统会出现问题。除了这三种基本的时钟产生构建块之外,还有其他不太为人所知的替代方案。ADI公司提供的TimerBlox模块就是这样一种替代方案。它们是基于硅的时序模块,与微控制器不同,它们在运行中是完全模拟的,可以通过电阻进行调整。所以,它不需要软件编程,功能也非常可靠。图1对不同的TimerBlox模块进行了概述,且介绍了它们各自的基本功能。使用这些基本构建模块可以生成无数其他功能。

 

按键控制延时灯电路方案设计3.png 

 

1.用于生成各种时序功能的TimerBlox电路。与广泛使用的555定时器电路相比,TimerBlox电路不依赖外部电容充电。所有的设置都在电阻中完成,因此其功能更精确。精度可达到1%至2%。晶体振荡器的精度更高,约为100倍,但随之而来的是各种缺点。

 

按键控制延时灯电路方案设计4.png 

 

2.采用LTC6993 TimerBlox集成电路的包络检波器。时序模块的应用非常多样化。ADI公司已经发布了许多示例电路。图2显示了一个包络检波器。几个快速脉冲结合在一起形成一个较长的脉冲。

 

LTC6993-2的外部组件对于这个应用来说是最少的。电路中的电容只是一个支持电源电压的备用电容,对定时模块的精度没有影响。其他有趣的应用还包括用于电源的多个开关稳压器的相移同步,或将扩频调制添加到具有同步输入的开关稳压器IC中。另一个典型的应用是部署指定的延迟,也就是定时器为特定的电路段提供延迟开启的功能。有许多不同的技术解决方案用于生成时钟信号和执行各种基于时间的任务。每种方案各有其优缺点。例如TimerBlox模块这样的硅振荡器,就因为使用可变电阻代替电容,所以具备易于使用、精度高、可靠性高等特点。

相关资讯
无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。

拥有卓越性能的高精度超薄低功耗心电贴—YSX211SL

随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。

可编程晶振选型应该注意事项

对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。

性能高的服务器—宽电压有源晶振YSO110TR 25MHZ,多种精度选择支持±10PPM—±30PPM

在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。

差分晶振怎么测量

其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!