发布时间:2019-11-21 阅读量:1107 来源: 我爱方案网 作者: Frederik Dostal
问题:
如何测量电感电流?
答案:
开关电源通常使用电感来临时储能。在评估这些电源时,测量电感电流通常有助于了解完整的电压转换电路。但测量电感电流的最佳方法是什么?
图1以典型的降压型转换器(降压拓扑)为例,显示了针对这类测量的建议设置。接入一根辅助小电缆与电感串联。将它用来连接一个电流探头,并通过示波器显示电感电流。建议在电感具有稳定电压的那一侧进行测量。大多数开关稳压器拓扑使用电感的方式是,一侧电压在两个极限值之间切换,而另一侧电压则保持相对稳定。对于图1所示的降压型转换器,开关节点(即电感L的左侧)上的电压以开关边沿的速率在输入电压和地电压之间切换。电感的右侧是输出电压,通常相对稳定。为了减少由于电容耦合(电场耦合)引起的干扰,电流测量环路应放置在电感安静的一侧,如图1所示。
图1.开关电源中的电感电流测量示意图。
图2显示了用于该测量的实际设置。将电感提起,并将两个端子中的一个斜焊到电路板上。另一个端子通过辅助电线连接到电路板上。这种转换很容易就可以完成。热气流脱焊是拆卸电感的一种行之有效的方法。许多SMD返修站都提供温度可调的热气流处理。
图2.电感电流测量的实际设置。
电流探头由示波器制造商提供。遗憾的是,它们通常非常昂贵,因此有一个问题不断地被提出,即是否也可以通过分流电阻来测量电感电流。原则上这是可行的。但是,这种测量方法的缺点是,在开关电源中产生的开关噪声很容易通过分流电阻耦合到电压测量中。因此,特别是在关注的点上,当电感电流改变方向时,测量结果并不能真正代表电感电流的行为。
图3.电感电流的测量结果显示为蓝色,饱和电感的行为显示为附加的紫色。
图3显示了通过与所用示波器兼容的电流探头检测到的开关电源的电感电流(蓝色)的测量结果。除了显示为蓝色的测量结果之外,还添加了紫色标记,它指示当电感开始接近峰值电流进入过度饱和时,流过电感的电流状况。当选择的电感对于给定的应用不能提供足够的额定电流时,就会发生这种情况。在开关电源中进行电感电流测量的主要原因之一是,它可以帮助识别是否正确选择了电感,或者在工作中或故障情况下是否会出现电感饱和。
用分流电阻代替电流箝位进行测量将会出现强耦合噪声,尤其是在峰值电流处,这使得电感饱和的检测非常困难。
线圈电流的检测在电源评估中非常有用,并且可以通过合适的设备轻松实现。
作者简介
Frederik Dostal曾就读于德国埃尔兰根大学微电子学专业。他于2001年开始工作,涉足电源管理业务,曾担任各种应用工程师职位,并在亚利桑那州凤凰城工作了4年,负责开关模式电源。他于2009年加入ADI公司,并在慕尼黑ADI公司担任电源管理现场应用工程师。
随着电池技术的飞速发展,现代设备对充电效率、功率密度和可靠性的需求日益增长。从电动工具到工业搬运设备,再到电动汽车,快速、高效的充电系统已成为提升用户体验和生产力不可或缺的关键。然而,设计高性能的电池充电解决方案需要综合考虑功率拓扑、半导体器件选择以及系统优化。本文将探讨电池充电系统的设计标准,分析主流拓扑结构,并介绍安森美(onsemi)先进的功率半导体技术如何助力实现更高效、更紧凑的充电方案。
在电源系统开发中,实验室测试数据的准确性直接影响产品性能评估。工程师们往往聚焦于拓扑结构优化与元件选型,却容易忽视一个隐藏的误差源——测试导线的物理布局。当我们使用ADP2386评估板进行负载瞬态测试时,发现仅改变电源与负载间的导线排布方式,竟使输出电压尖峰出现7%的显著差异。这种由测试线缆寄生参数引入的"隐形误差",正在悄然影响着您的测试结论可信度。
在硬件调试中,许多工程师在测量晶振时发现两端都有电压,例如1.6V,但没有明显的压差,第一反应可能是怀疑短路。
在电子设备中,CMOS有源晶振作为核心时钟源,其供电电压与输出特性直接影响系统稳定性。然而,高频方波信号的测量常因工具选择不当而产生误差:传统万用表的交流档基于正弦波有效值校准,测量方波时误差可达40%以上,而示波器通过直接捕获峰峰值(Vpp)和频域特性,可精准反映晶振的幅值、占空比及起振状态。本文将从有源晶振的电压特性(如YSO110TR系列兼容1.8-3.3V宽压供电)切入,解析万用表直流档的半压测量原理(3.3V供电时显示约1.65V),并对比示波器在探测CMOS方波时的关键技术参数(如探头衰减档位选择与接地优化),为工程师提供兼具理论基础与实践价值的测量方案参考。
加速度灵敏度是晶体振荡器对任何方向施加的外力的固有灵敏度。石英振荡器确实提供了我们所有人每天都依赖的电子设备的心跳。石英的有用之处在于,如果施加电压,石英将开始振动。不利的一面是,如果施加振动,石英会产生电压。该电压显示为相位噪声,并且是真正的阻力。