【投稿】用于通信的高压升压和反相转换器

发布时间:2019-11-18 阅读量:963 来源: 我爱方案网 作者: Jesus Rosales

电子通信领域正迅速扩展到日常生活的各个方面。检测、传输和接收数据都需要使用大量器件,例如光纤传感器、RF MEMS、PIN二极管、APD、激光二极管、高压DAC等等。在许多情况下,这些器件需要几百伏的电压才能运行,因此需要使用DC-DC转换器,以满足严格的效率、空间和成本要求。


ADI公司的LT8365是一个多用途单芯片升压转换器,集成了一个150 V、1.5 A开关,因此特别适用于通信领域中包括便携式器件在内的高压应用。可以轻松从低至2.8 V和高至60 V的输入中生成高压输出。芯片具备可选的展频功能,可以帮助消除EMI,还有许多其他常用的特性,具体请参见数据手册。图1和图2所示的转换器被用于从12 V输入源为高压DAC、MEMS、RF开关和高压运算放大器提供正压和负压电轨。这些转换器在断续导通模式(DCM)下运行,提供最高10 mA电流,以及+250 V和–250 V输出电压,转换效率约为80%。

 

升压比 > 1:40


在升压转换器中实施DCM运行的一个优势在于:不论占空比多高,都能够实现高升压比。此外,电感和输出电容的值和物理尺寸都可以减小,从而减小PCB上所使用的解决方案的整体尺寸。图3所示的电路可以轻松部署到小于1 cm2的空间内。

 

 12v.png

图1.12 V输入到250 V输出的2级升压转换器

 

 13V.png

图2.12 V输入到–250 V输出的2级反相转换器

 

 14v.png

图3. 3 V输入到125 V输出的升压转换器

 

在有些情况下,可用的输入源的电压可能非常低,但却需要高输出电压。此时,可以使用图3所示的转换器来驱动多个雪崩光电二极管、PIN二极管,以及其他需要高偏置电压的器件。这些升压转换器可以从3 V输入生成125 V输出,负载电流最高3 mA。

 15v.png

图4.3 V输入到250 V输出的2级升压转换器

 

图4所示的转换器利用3 V输入,将125 V输出提升到250 V输出,且支持约1.5 mA电流。在通信领域,有许多器件都需要从低输入电压源中获得这么高的偏置电压。

 

到底可以达到多高或多低?


在需要极高电压的情况中,无论是正电压或负电压,升压转换器都可以使用多级来将输出升高至2倍、3倍甚至更多。图1和图2中所示的转换器展示了在两个方向(正电压和负电压)如何将开关电压翻倍。图5中所示的3级升压转换器可以从12 V输入生成8 mA、375 V输出。

 

 16v.png

图5.12 V输入到375 V输出的3级升压转换器

 

注意:可用的输出电流必须随着输出电压上升而下降,这是因为开关电流能力没有改变。例如,用于提供20 mA电流的单级转换器在添加第2个级时,会提供约10 mA电流。添加更多级时,始终确保峰值开关电流始终位于可保证的开关限流值范围内。

 

输出电压检测得到简化


LT8365提供单个FBX引脚来检测输出电压。如本文中所示的所有示意图一样,由连接到FBX引脚的简单电阻分压器来检测输出电压,无论输出极性为何。

 

结论


LT8365支持需要对低至2.8 V的输入电压实施紧凑、高效、高输出电压升压转换的应用,这在通信领域是非常常见的。它也可以用作反相转换器,在常用的拓扑中,则可用作(例如)CUK和SEPIC转换器。LT8365采用小型散热增强16引脚MSOP封装。

 

作者简介


Jesus Rosales是ADI公司应用部的应用工程师,工作地点位于美国加利福尼亚州米尔皮塔斯。1995年加入凌力尔特公司(现为ADI的一部分)担任助理工程师,2001年晋升为应用工程师。此后他一直为升压/反相/SEPIC系列单芯片转换器和一些离线隔离应用控制器提供技术支持。他于1982年毕业于Bay Valley技术学院,获电子学副学士学位。联系方式:jesus.rosales@analog.com。

相关资讯
压控晶体振荡器(VCXO)工作原理深度解析:电压如何精确调谐频率

压控晶体振荡器(Voltage-Controlled Crystal Oscillator, VCXO)是一种关键的高精度频率源,其核心特性在于能够通过施加外部控制电压来精细调节其输出频率。其频率控制过程依赖于精密的电路设计和晶体的独特物理特性,主要涉及以下核心原理:

从机械臂到数字脉动:电感式位置传感器驱动线控技术重塑汽车电子架构

百年汽车工业的机械传动传统正遭遇颠覆性变革。随着电动化与智能化浪潮席卷而来,传统的机械连接在精度、响应速度和集成度上面临瓶颈。线控技术(Drive-By-Wire)应运而生,它通过精密的传感器(如电感式位置传感器)将驾驶者的物理操作——如踩踏制动踏板——转化为数字指令,彻底剥离了机械传导的束缚。这种“电传操纵”正深度重构着汽车的电子电气架构,而电感式位置传感器凭借其高精度、高可靠性和独特的非接触特性,成为了线控系统落地实施的标杆型解决方案。

动态栅极驱动 + 车规级 SiC 模块:Wolfspeed & NXP 800V 逆变器参考设计释放更高性能与可靠性

汽车行业正加速向零排放未来转型,但下一代电动车必须超越百年燃油车设定的性能、耐用性和可靠性标杆。为助力汽车制造商快速开发领先的电动车型,Wolfspeed 与恩智浦 (NXP) 强强联合,推出了一款经过全面验证的 800V 牵引逆变器参考设计。该设计融合尖端碳化硅(SiC)技术与高性能控制方案,旨在显著提升电动车效率、续航里程及系统可靠性。

RTC芯片演进:从经典 DS12C887 到现代 YSN8130 的跨越

曾几何时,Dallas公司的DS12C887 RTC芯片凭借断电续航能力,成为设备可靠的“时间守护者”。它能精准计时(秒至年),支持多种编码格式和可编程中断,并集成了备用RAM与方波输出,广泛应用于电脑、家电及工控领域。然而,其DIP24封装的大体积、10μA的典型功耗以及±1分钟/月的精度,在追求小型化、低功耗、高精度的智能穿戴与物联网时代,逐渐显露疲态。

关键系统频偏失控?你可能忽略了晶振的稳定性根基!​

作为电子系统的“心脏”,晶振的稳定度直接关乎时序精度、数据可靠性与系统韧性强健。频差、温漂、老化、相噪、抖动——五大核心指标如同精密的仪表,共同度量着晶振输出的“稳”字诀。一旦失稳,轻则通信卡顿、数据出错,重则时序紊乱、系统瘫痪,后果堪忧。工程师们,如何慧眼识“稳”晶?数据手册参数林林总总,哪些才是关键抓手?