发布时间:2019-09-4 阅读量:1422 来源: 我爱方案网 作者: Frederik Dostal
反激式转换器通常用于需要对电源电压进行电气隔离并且传输功率相对较低的应用中。输出功率低于60 W时通常采用反激式转换器。
对于电气隔离电源,您必须确定电气隔离控制器IC在初级或次级的哪一端将会导通。如果它位于次级端,则必须通过电气隔离提供对初级端电源开关的控制。
无论是初级端的控制器还是次级端的控制器,在两种架构中都需要可越过电气隔离进行信号传输的路径。常用路径为光耦合器(或光隔离器)。然而,它们都会带来一些不利因素。它们的额定温度通常仅为85°C,电流传输比(CTR)随时间而改变,这意味着它们的传输行为在电路使用寿命期间会发生变化。此外,还需要其他元件来控制光耦合器。如果使用光耦合器,隔离式电源的反馈环路速度通常很慢。近年来,针对该问题已开发出一些简洁的解决方案。第一种解决方案是反激式控制器,它不直接测量输出电压。通过监测初级端变压器绕组两端的电压,可以得到有关实际输出电压足够准确的判据。该调节精度取决于应用的常用条件,包括输入和输出电压、负载变化和电压变化。
不过,对于许多应用而言,±10%至±15%的调节精度已经足够。图1所示为LT8301。由于集成了电源开关,并采用SOT23封装,IC仅需很少的外部元件。电路的隔离击穿电压仅取决于所用变压器。因此可提供极大的灵活性,尤其是在要求非常高的隔离电压时。
图1.无需隔离反馈路径的LT8301反激式稳压器。
然而,对于需要更高输出电压控制精度的应用,另一个有趣的解决方案最近才刚刚上市。ADI公司向市场推出了一款反激式控制器ADP1071,它包含一个采用iCoupler®技术的完全集成式反馈路径。
图2显示了仅需极少数量无源元件的电路。ADP1071包含初级端控制器、可提高转换效率的次级端有源整流控制器,以及完全集成式反馈路径,可实现非常快速的反馈环路。通过采用该解决方案,输出电压调节非常准确,更重要的是非常快速,即使在负载瞬变很大时也不例外。可允许的工作温度高达125°C硅片温度。
图2.ADP1071反激式控制器具有集成式反馈路径,可实现非常精确的调节。
其最大隔离电压取决于所选变压器以及开关稳压器IC采用的隔离技术。芯片的最大隔离电压为5 kV。已申请符合VDE V 0884-10的增强绝缘分类等级。
上述有趣的解决方案可用于开发电气隔离电源。根据应用情况,无需反馈路径的解决方案或具有完全集成式反馈路径的解决方案都有可能是合适的。由于不再受光耦合器85°C工作温度的限制,因此可实现功率密度非常高的紧凑型电源设计。
欢迎工程师或FAE来投稿,凡是未经发布的首发原创稿必有重金酬谢!投稿请联系包工头(微信ID:kuaibao52) 查看投稿细则》
安森美(onsemi)推出的碳化硅共源共栅场效应晶体管(Cascode FET),通过创新架构融合SiC JFET与低压硅MOSFET,成功解决了SiC JFET常开特性的应用瓶颈。该设计兼具SiC材料的高效优势与硅器件的易控特性,在硬开关与软开关场景中展现显著性能提升。本文将深入剖析其结构原理及核心优势。
在现代电子系统的设计中,晶振作为提供稳定时钟信号的“心脏”,其性能直接影响着整个系统的可靠性与效率。面对差分晶振与无源晶振(晶体谐振器) 这两类核心时钟源,工程师们往往需要在性能、成本、设计复杂度与抗干扰能力之间寻求微妙的平衡。这两者绝非简单的引脚差异,而代表了截然不同的工作原理与设计哲学:
为确保电子系统在各种工作环境下的频率稳定性,尤其是应对频率偏移(如温漂)问题,晶体振荡器(XO)常采用补偿技术。其中,VCXO(电压控制晶振)和TCXO(温度补偿晶振)是实现精密频率补偿的核心方案。VCXO利用电压调控实现精准的频率微调,擅长维持卓越的短期稳定性;而TCXO则通过内置温度传感与补偿电路,在苛刻温度环境中自动维持频率的长期稳定。这两种补偿方式针对不同应用需求,构成了提升时钟源性能的关键路径。
【小知识】时钟芯片一种高性能、低功耗、带RAM的实时时钟电路,英文名称:Real-time Clock/Calendar Chip(简称:RTC),可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能。采用IIC通信接口。
晶振作为电子设备的"心跳发生器",其起振状态直接决定系统能否正常运行。本文深度解析四种检测方法的实战要点:示波器法需规避探头电容引发的停振风险,万用表电压法需警惕芯片故障导致的误判,频率计通过波形特征精准锁定起振状态,而听声辨振实为认知误区——人耳可闻的异常声响反而暴露晶振缺陷。随着5G/新能源产业爆发式增长,国产晶振厂商正加速技术攻坚,保障起振检测的可靠性已成为行业刚需。