【投稿】数字电位器模拟对数抽头,以准确设置增益

发布时间:2019-08-7 阅读量:1221 来源: 我爱方案网 作者: W. Stephen Woodward

数字电位器(dpot)是一种常见组件,采用各种封装、电阻和分辨率。但是,除了电阻和设置之间的常规线性函数,它并无其他效用。对于需要广泛的动态增益调整范围(例如数十倍频程)的应用来说,这会造成一些问题。


以一款放大器为例,你使用8位(256中的1个)分辨率电位器,将其增益设置为0至10,000 (80dB)。当电位器设置与电阻(线性锥度)成线性关系时,dpot设置与增益成线性关系。在256个电位器设置中,每个步进都表示约40的增益幅度增加(即增益步进为0、40、80、120、160等)。


对于8或以上的dpot设置(增益>300),这给增益设置提供了不错的分辨率,可以实现每个步进1dB或更低的增益控制。但是,当设置值低于8时,增益分辨率大幅降低。例如,如果你需要将增益设置为100或以下,你没有办法以任何有意义的精度达到必要的值,你只能选择80或120左右的值。


如果具备准确、稳定、高分辨率,且带有对数抽头的数字电位器(电阻对数与设置成正比),就很容易安排增益控制电路,在整个调整范围内提供恒定的分辨率(增量单位:dB)。遗憾的是,目前并没有具备出色分辨率(例如,步进小于 6dB)的对数数字电位器(对数dpot)。


但并非全无用处。图1所示的Design Idea采用普通的线性抽头电位器(例如,ADI提供的价格便宜的双极 AD5200 ),AD5200)实现了相近的对数增益控制。


adi.png

图1 线性数字电位器模拟对数抽头


如果Dx(上方所示)表示游标设置(0 – 255),我们可以采用分段求解的方式,轻松得出放大器增益Vout/Vin与Dx的设计公式。首先,作为Vin的函数,求解游标电压(Vw):
1.Vw = −Vin RAB Dx / (255 R1)

接下来,作为Vw的函数,求解Vout:
2.Vout = −Vw 255 R2 / (RAB (255 – Dx))

然后,将公式1和2结合在一起:
3.增益 = Vout / Vin = −Vw 255 R2 / (RAB (255 – Dx)) / (−Vin RAB Dx / (255 R1))

4.增益 = (R2 / R1)(Dx / (255 – Dx))

5.Dx = 255 增益 (R1 / R2) / (1 + 增益 (R1 / R2))
毫无疑问:
6.dB(增益) = 20 Log10((R2 / R1)(Dx / (255 – Dx)))

7.增益 = 10dB/20

由此得到:
8.Dx = 255 10dB/20 (R1 / R2) / (1 + 10dB/20 (R1 / R2))


adi22.png

图2 dB增益(y轴左半段)和增益集分辨率(y轴右半段)与Dx(x轴)之间的关系


认真看看得出的增益公式,可以看到这些有意思的地方:


1.Dx/(255 - Dx)的近似对数性质。如图2所示,当R2/R1=100,Dx = 8时,得出的增益=~10dB;Dx = 23时,增益为20dB;Dx = 128时,增益为40dB;Dx = 232时,增益为60dB;Dx = 247时,增益为70dB。在整个60dB =1,000至1范围内,增益设置的分辨率仍然不超过1dB,这一点尤其重要。此外,Dx =0时,增益设置为0,同时Dx = 255选择开环。


2.采用电位器游标作为输入端子的策略有效地将游标触点移动到放大器A1的馈电回路中(图1),从而消除了作为误差项的影响,提高了增益设置的时间和温度稳定性。


3.同时,在A1馈电和A2输入(图1)端使用RAB电阻元件可以将RAB公差和温度系数(tempco)(AD5200中为+/-30%和500ppm/oC)与灵敏度进行比较,R1和R2是增益集精度的唯一决定因素。


如果需要高于8位(1/256)的分辨率,可以将10位AD5292等部件放入拓扑中,获得高于4×的增益设置精度。谨记,增益公式中出现255时,要替换为1023!或者,更概括地说,如果N表示位数:
9.Dx = (2N – 1) 增益 (R1 / R2) / (1 + 增益 (R1 / R2))

 

相关资讯
日系晶振平替方案!YXC国产温补晶振交期缩短50%

在高精度雷达和导航应用领域中,时钟稳定性和精准定位是两大关键因素。由于雷达系统需要精确测量目标的距离、速度和方位,而导航系统则要求高精度地确定位置和规划路径,因此这些应用都对时钟信号的精度提出了极高要求。

芯控未来:破局AI时代的触觉交互密码

当指尖划过屏幕成为数字时代的基础语言,触控技术正在书写人机交互的新篇章。Canalys最新数据显示,全球PC市场在2024年实现3.9%的企稳增长后,2025年将迎来AI PC换机潮与Windows 10停服的双重催化,预计触控设备市场规模将突破百亿美元。在这场交互革命中,触控板已从外围配件进化为生产力核心组件——更精准的轨迹捕捉、更具实感的力度反馈、更智慧的生物识别,正在重新定义"指尖生产力"的边界。兆易创新凭借在电容触控领域十余年的技术积淀,以GSM3765/3766芯片组为支点,撬动这场触觉体验的全面升级。

工业5.0时代,AMR如何实现人机共舞?解析安森美的安全设计密码

在工业4.0向工业5.0跨越的进程中,自主移动机器人(AMR)正从“效率工具”蜕变为“智慧伙伴”。随着制造业对“以人为本”和“可持续性”的追求升级,AMR的设计核心已从单纯的自动化转向安全性与人机协作的深度融合。然而,高速移动的机械臂、复杂环境中的动态障碍物,以及突发外力冲击,仍对工人安全和设备稳定性构成挑战。如何在提升生产力的同时,让AMR像人类一样“感知风险、快速决策”?安森美(onsemi)通过传感、运动控制与智能照明的系统性创新,为这一难题提供了前瞻性答案。

气压感知破局者:兆易创新以“3高1低1优”战略重塑MEMS传感器生态

在万物互联的时代,传感器如同数字世界的“末梢神经”,悄然推动着智能生活的每一次革新。作为MEMS气压传感器领域的革新力量,兆易创新正以颠覆性技术突破行业边界——从实现水下100米精准测量的防水型GDY1122,到功耗低至微安级的节能标杆GDY1121,其产品矩阵以“高精度、高集成、高灵敏度”的硬核实力,攻克复杂环境下的感知难题。在慕尼黑上海电子展的聚光灯下,这家中国芯片企业不仅展示了10ATM防水等级的尖端方案,更通过“3高1低1优”战略,将MEMS传感器推向智能穿戴、工业监测、应急救援等领域的核心舞台。

知冷知热,更知“芯”:TCXO让时钟信号无惧温度挑战

在各种电子设备中,晶振作为时钟信号的核心元件,其精度直接决定了系统的稳定性。由于石英晶体及周边电路元件受温度变化影响会发生热膨胀和参数漂移,晶振的频率往往随温度波动而偏移,从而影响整体性能。