(1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。
(2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。
(3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟电源电路区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。
(4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。
(5)用地线把数字区与模拟区隔离,与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。
(6)单片机和大的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。
(7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件基础实用电路如磁珠、磁环、电源滤波器,屏蔽罩,可显着提高电路的抗干扰性能。
电压轨时序控制
许多FPGA要求不同电源电压轨以特定顺序上电。内核电压的供应往往需要早于I/O电压的供应,否则一些FPGA会被损坏。为了避免这种情况,电源需要按正确的顺序上电。使用标准DC-DC转换器上的使能引脚,可以轻松实现简单的上电时序控制。然而,器件关断通常也需要时序控制。仅执行使能引脚时序控制,很难取得良好的结果。更好的解决办法是使用具有高级集成时序控制功能的PMIC,例如ADP5014。
如果使用多个单独的电源,增光电显示电路加时序控制芯片便可实现所需的上电/关断顺序。一个例子是LTC2924,它既能控制DC-DC转换器的使能引脚来打开和关闭电源,也能驱动高端N沟道MOSFET来将FPGA与某个电压轨连接和断开。
电压轨单调上升
除了电压时序之外,启动过程中还可能要求电压单调上升。
快速电源瞬变
FPGA的另一个特点是它会非常迅速地开始抽取大量电流。这会在电源上造成很高的负载瞬变。出于这个原因,许多FPGA需要大量的输入电压去耦。陶瓷电容非常靠近地用在器件的VCORE和GND引脚之间。高达1mF的值非常控制电路常见。如此高电容有助于降低对电源提供非常高峰值电流的需求。但是,许多开关稳压器和LDO规定了最大输出电容。FPGA的输入电容要求可能超过电源允许的最大输出电容。
电源不喜欢非常大的输出电容,原因有两点——在启动期间,开关稳压器的输出电容看来像是短路的。对此问题有一个解决办法。较长的软启动时间可以让大电容组上的电压稳定地升高,电源不会进入短路限流模式。
该电容值会成为调节环路的一部分。集成环路补偿的转换器不允许输出电容过大,以防止稳压器的环路不稳定。在高端反馈电阻上使用前馈电容常常可以影响控制环路