电源是能源输入输出的地方,如同生命循环。如果电源的设计不合理,或者能量输出不足,带给整个电子系统都是致命的。电源的工作原理包含下面的内容:
1.交流电源输入经整流滤波成直流;
2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;
3.开关变压器次级感应出高频电压,经整流滤波供给负载;
4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰;?在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高;?开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出;?一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁设备电源。
接下来我们来看看非隔离式开关电源(SMPS)滤波电感的关键因素。这里所涉及的是适合超薄型表面贴装设计的应用,像电压调节模块(VRM)和负载点(POL)型电源,但不包括基于更大底板的系统。
如图为一个降压拓扑结构电源的架构,该构架广泛应用于输出电压小于输入电压的系统。在典型的降压拓扑结构电路中,当开关(Q1)闭合时,电流开始通过这个开关流向输出端,并以某一速率稳步增大,增加速率取决于电路电感。根据楞次定律,di=E*dt/L,流过电感的电流所发生的变化量等于电压乘以时间变化量,再除以这个电感值。由于流过负载电阻RL的电流稳定增加,输出电压成正比增大。
在达到预定的电压或电流限值时,控制集成电路将开关断开,从而使电感周围的磁场衰减,并使偏置二极管D1正向导通,从而继续向输出电路供给电流,直至开关再度接通。这一循环反复进行,而开关的次数由控制集成电路来确定,并将输出电压调控在要求的电压值上。
电感值对于在开关断开期间保持流向负载的电流很关键。所以必须算出保持降压变换器输出电流所必需的最小电感值,以确保在输出电压和输入电流处于最差条件下,仍能够为负载供应足够的电流。为确定最小的电感值,需要知道如下信息:
●输入电压范围
●输出电压及其规定范围
●工作频率(开关频率)
●电感纹波电流
●运行模式,连续运行模式还是非连续运行模式
下列公式用于计算降压变换器所需的电感值:
L1 = Vo(1-Vo/(Vin-Von))/(f*dI)
连续运行模式下:dI 《 1/2I
为了算出适用于电源整个运行条件的最小电感值,对参数值的选择必须能够保证在各项参数处于最不利组合的条件下,所选择的这一电感值仍能将纹波电流保持在特定的数值范围内。而针对降压型电源,其最不利组合条件为:输入电压和频率均处于各自的最低数值时。此外,还要将输出电压也取为其最小规定值,以确定能够保持正常调节功能所需的最低电感值。设计者可以按照自己所习惯的方式,对这些数值进行控制,以达到最差条件成立的状态。
按照表1中所列出的数据,最小电感值计算如下:
L1(min) = Vo(min)(1-Vo(min)/(Vin(min)-Von))/(f(min)*dI)
L1(min) = (1-/())/(693,000Hz * )
L1(min) =
因此,在这一具体应用中,电感的电感值至少为 μh,而其电流额定值也要在最低的20安培的工作电流之上,并保持足够的安全系数。而如果选择一个电感值低于此最小值的电感,就将导致降压变换器可能无法在最大电流下将其输出电压保持在规定范围内。
将电感值确定以后,实际电感的设计必须符合相关电气标准、系统尺寸和安装方式等限制。许多磁性元件供应商均提供各种型号的标准产品,可满足绝大多数的设计标准要求。