发布时间:2017-12-27 阅读量:696 来源: 我爱方案网 作者:
英特尔推出了一系列专为AI深度学习开发的神经网络处理器芯片(Intel Nervana Neural Network Processor,简称NNP)。
这一系列配备了优异的机器学习能力,主要应用面向数据中心而非个人电脑。(据预计其占据了数据中心96%的市场份额),但目前AI的承载能力一般通过图形处理器或GPU(主要来自于Nvidia和ARM)发挥得更好。因此,对这些公司的芯片需求量增长迅速。谷歌已经加入到行列中,针对云计算服务推出了自主研发的硅芯片Tensor Processing Unit,而英国的Graphcore等初创公司也在填补相关的空白。
这款芯片的处理速度究竟有多快?英特尔并未透露,但生成到2020年会将深度学习训练的速度加快100倍。关于NNP芯片处理器何时上市,英特尔说法也比较含糊。让人欣喜的是,英特尔似乎有意在其Intel Nervana芯片周围构建完整的产品线。
以上就是小编为大家介绍的有关“面向深度学习的AI芯片”的相关知识,有想了解更多的朋友可以看以下相关文章。希望通过小编的介绍能给大家带来帮助!
“面向深度学习的AI芯片”的相关文章:
主流深度学习芯片的优缺点分析-原文链接:
http://www.52solution.com/knowledge/5620.html
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。
随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。
对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。
在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。
其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!