主流深度学习芯片的优缺点分析

发布时间:2017-12-27 阅读量:643 来源: 我爱方案网 作者:

深度学习全称深度神经网络,本质上是多层次的人工神经网络算法,即模仿人脑的神经网络,从最基本的单元上模拟了人类大脑的运行机制。近年来,其所取得的前所未有的突破掀起了人工智能新一轮的发展热潮。

最早的神经网络的思想起源于1943 年的 MCP人工神经元模型,当时是希望能够用计算机来模拟人的神经元反应的过程,但直到最近,它才真正让人工智能火起来。主要原因在于:算法的突破、数据量的激增和计算机能力/成本的下降。其中计算能力的提升的作为人工智能实现的物理基础,对人工智能发展的意义不言而喻。

本文我们就来分析目前主流的深度学习芯片的优缺点。



CPU 不适合深度学习

深度学习与传统计算模式最大的区别就是不需要编程,它是从输入的大量数据中自发地总结出规律,而传统计算模式更多都需要人为提取所需解决问题的特征或者总结规律来进行编程。也正因为如此,深度学习对计算能力要求非常高,以至于有人将深度学习称之为“暴力计算”。

因此,传统的 CPU并不适用于深度学习。

从内部结构上来看,CPU 中70%晶体管都是用来构建 Cache(高速缓冲存储器)和一部分控制单元,负责逻辑运算的部分(ALU模块)并不多。控制单元等模块的存在都是为了保证指令能够一条接一条的有序执行。这种通用性结构对于传统的编程计算模式非常适合,但对于并不需要太多的程序指令,却需要海量数据运算的深度学习的计算需求,这种结构就显得有心无力了。

GPU 深度学习主流芯片

与 CPU少量的逻辑运算单元相比,GPU 整个就是一个庞大的计算矩阵,GPU 具有数以千计的计算核心、可实现 10-100倍应用吞吐量,而且它还支持对深度学习至关重要的并行计算能力,可以比传统处理器更加快速,大大加快了训练过程。GPU是目前最普遍采用的深度学习运算单元之一。

目前,谷歌、Facebook、微软、Twitter 和百度等互联网巨头,都在使用 GPU作为其深度学习载体,让服务器学习海量的照片、视频、声音文档,以及社交媒体上的信息,来改善搜索和自动化照片标记等各种各样的软件功能。而某些汽车制造商也在利用这项技术开发无人驾驶汽车。

不过,由于 GPU的设计初衷是为了应对图像处理中需要大规模并行计算。因此,根据乐晴智库介绍,其在应用于深度学习算法时有数个方面的局限性:

第一,应用过程中无法充分发挥并行计算优势。深度学习包含训练和应用两个计算环节,GPU在深度学习算法训练上非常高效,但在应用时一次性只能对于一张输入图像进行处理, 并行度的优势不能完全发挥。

第二,硬件结构固定不具备可编程性。深度学习算法还未完全稳定,若深度学习算法发生大的变化,GPU无法灵活的配置硬件结构。

另外,在能耗上面,虽然 GPU要好于 CPU,但其能耗仍旧很大。



备受看好的 FPGA

FPGA,即现场可编辑门阵列,是一种新型的可编程逻辑器件,由于其具有静态可重复编程和动态在系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改。

FPGA作为人工智能深度学习方面的计算工具,主要原因就在于其本身特性:可编程专用性,高性能,低功耗。北京大学与加州大学的一个关于FPGA 加速深度学习算法的合作研究。展示了 FPGA 与 CPU 在执行深度学习算法时的耗时对比。在运行一次迭代时,使用 CPU耗时 375 毫秒,而使用 FPGA 只耗时 21 毫秒,取得了 18 倍左右的加速比。

根据瑞士苏黎世联邦理工学院(ETHZurich)研究发现,基于FPGA的应用加速比CPU/GPU方案,单位功耗性能可提升25倍,而时延则缩短了50到75倍,与此同时还能实现出色的I/O集成。而微软的研究也表明,FPGA的单位功耗性能是 GPU 的 10倍以上,由多个 FPGA 组成的集群能达到 GPU 的图像处理能力并保持低功耗的特点。根据英特尔预计,到 2020年,将有 1/3 的云数据中心节点采用 FPGA 技术。

不可估量的 ASIC

ASIC(Application Specific Integrated Circuits,专用集成电路),是指应特定用户要求或特定电子系统的需要而设计、制造的集成电路。ASIC用于专门的任务,比如去除噪声的电路,播放视频的电路,但是 ASIC明显的短板是不可更改任务。但与通用集成电路相比,具有以下几个方面的优越性:体积更小、功耗更低、可靠性提高、性能提高、保密性增强、成本降低。

从算力上来说,ASIC产品的计算能力是 GK210 的 2.5 倍。功耗上,ASIC 功耗做到了 GK210 的 1/15。

当然ASIC是能效最高的,但目前,都在早期阶段,算法变化各异。想搞一款通用的ASIC适配多种场景,还是有很多路需要走的。但从比特币挖矿机经历的从CPU、GPU、FPGA到最后 ASIC 的四个阶段来推论,ASIC将是人工智能发展的重要趋势之一。另外,在通信领域,FPGA曾经也是风靡一时,但是随着 ASIC 的不断发展和蚕食,FPGA的份额和市场空间已经岌岌可危。

据了解,谷歌专用于人工智能深度学习计算的 TPU,其实也是一款 ASIC。


以上就是小编为大家介绍的有关“主流深度学习芯片的优缺点分析”的相关知识,有想了解更多的朋友可以看以下相关文章。希望通过小编的介绍能给大家带来帮助!


主流深度学习芯片的优缺点分析”的相关文章:


面向深度学习的AI芯片-原文链接: 
http://www.52solution.com/knowledge/5621.html

相关资讯
无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。

拥有卓越性能的高精度超薄低功耗心电贴—YSX211SL

随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。

可编程晶振选型应该注意事项

对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。

性能高的服务器—宽电压有源晶振YSO110TR 25MHZ,多种精度选择支持±10PPM—±30PPM

在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。

差分晶振怎么测量

其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!