电阻(Resistance,通常用“R”表示)是所有电路中使用最多的元件之一。在物理学中,用电阻来表示导体对电流阻碍作用的大小。导体的电阻越大,表示导体对电流的阻碍作用越大。不同的导体,电阻一般不同,电阻是导体本身的一种特性。电阻元件是对电流呈现阻碍作用的耗能元件。因为物质对电流产生的阻碍作用,所以称其该作用下的电阻物质。电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。
电阻元件的电阻值大小一般与温度,材料,长度,还有横截面积有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。电阻在电路中通常起分压、分流的作用。对信号来说,交流与直流信号都可以通过电阻。
电阻是一个线性元件。说它是线性元件,是因为通过实验发现,在一定条件下,流经一个电阻的电流与电阻两端的电压成正比——即它是符合欧姆定律:I=U/R
常见的碳膜电阻或金属膜电阻器在温度恒定,且电压和电流值限制在额定条件之内时,可用线性电阻器来模拟。如果电压或电流值超过规定值,电阻器将因过热而不遵从欧姆定律,甚至还会被烧毁。线性电阻的工作电压与电流的关系如图1所示。 电阻的种类很多,通常分为碳膜电阻,金属电阻,线绕电阻等:它又包含固定电阻与可变电阻,光敏电阻,压敏电阻,热敏电阻等。
通常来说,使用万用表可以很容易判断出电阻的好坏:将万用表调节在电阻挡的合适挡位,并将万用表的两个表笔放在电阻的两端,就可以从万用表上读出电阻的阻值。应注意的是,测试电阻时手不能接触到表笔的金属部分。但在实际电器维修中,很少出现电阻损坏。着重注意的是电阻是否虚焊,脱焊。
控制电阻大小的因素
电阻元件的电阻值大小一般与温度有关,还与导体长度、横截面积、材料有关。衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。多数(金属)的电阻随温度的升高而升高,一些半导体却相反。如:玻璃,碳在温度一定的情况下,有公式R=ρl/s其中的ρ就是电阻率,l为材料的长度,单位为m,s为面积,单位为平方米。可以看出,材料的电阻大小正比于材料的长度,而反比于其面积。
电阻的作用主要是:阻碍电流流过 ,应用于限流、分流、降压、分压、负载与电容配合作滤波器及阻匹配等.数字电路中功能有上拉电阻和下拉电阻。
常见的电阻介绍:
1、热敏电阻:是一种对温度极为敏感的电阻器。
分为正温度系数和负温度系数电阻器。选用时不仅要注意其额定功率、最大工作电压、标称阻值,更要注意最高工作温度和电阻温度系数等参数,并注意阻值变化方向。
2、光敏电阻:硫化镉等材质,阻值随着光线的强弱而发生变化的电阻器。分为可见光光敏电阻、红外光光敏电阻、紫外光光敏电阻。选用时先确定电路的光谱特性。
3、压敏电阻:是对电压变化很敏感的非线性电阻器。当电阻器上的电压在标称值内时,电阻器上的阻值呈无穷大状态,当电压略高于标称电压时,其阻值很快下降,使电阻器处于导通状态,当电压减小到标称电压以下时,其阻值又开始增加。
压敏电阻可分为无极性(对称型)和有极性(非对称型)压敏电阻。选用时,压敏电阻器的标称电压值应是加在压敏电阻器两端电压的2-2.5倍。另需注意压。
4、湿敏电阻:是对湿度变化非常敏感的电阻器,能在各种湿度环境中使用。它是将湿度转换成电信号的换能器件。选用时应根据不同类型号的不同特点以及湿敏电阻器的精度、湿度系数、响应速度,湿度量程等进行选用。
注:电阻在低频的时候表现出来的主要特性是电阻特性,但在高频时,不仅表现出电阻特性,还表现出电抗特性,这在无线电方面(尤其是射频电路中)很重要。