短距离无线充电原理
实现无线充电主要通过三种方式,即电磁感应、无线电波、以及共振作用。目前最为常见的充电解决方案就采用了电磁感应,通过初级和次级线圈感应产生电流,从而将能量从传输端转移到接收端,该解决方案提供商包括英国Splashpower、美国WildCharge 和Fulton Innovation等公司。
目前最为常见的充电解决方案就采用了电磁感应,通过初级和次级线圈感应产生电流,从而将能量从传输端转移到接收端,该解决方案提供商包括英国Splashpower、美国WildCharge 和Fulton Innovation等公司。从Splashpower网站我们可以看到,该公司目前可以实现在一个充电垫上对一部数码相机和一部手机同时充电,但是该公司发言人也在近期表示,其首款带有Splashpower功能的消费类终端产品将不会于2008年下半年前面世。与之相比,Fulton公司的商业化表现更佳,已经宣布与摩托罗拉、家具制造商Herman Miller以及汽车部件制造商Visteon公司合作来推广其技术。事实上,电磁感应解决方案在技术实现上并无太多神秘感,中国本土的比亚迪公司,早在2005年12月申请的非接触感应式充电器专利,就使用了电磁感应技术。因此目前该领域供应商采取的措施,就是使产品尽早上市,成为该领域的“事实标准”,从而成为最终的事实标准。
无线电波是另一个发展较为成熟的技术,其基本原理类似于早期使用的矿石收音机。该领域的代表公司Powercast表示,其最终研制的微型高效接收电路,可以捕捉到从墙壁弹回的无线电波能量,在随负载作出调整的同时保持稳定的直流电压。只需一个安装在墙身插头的发送器,以及可以安装在任何低电压产品的“蚊型”接收器,Powercast解决方案就可以将无线电波转化成直流电,在约1米范围内为不同电子装置的电池充电。目前,该公司已经与菲利浦公司签署了合作协议。
另一种尚在研究中的技术是电磁共振。由麻省理工学院(MIT) 物理教授Marin Soljacic带领的研究团队利用该技术点亮了两米外的一盏60瓦灯泡,并将其取名为WiTricity。该实验中使用的线圈直径达到50cm,还无法实现商用化,如果要缩小线圈尺寸,接收功率自然也会下降。因此,他们预计在未来几年内,最终开发出能够安全为笔记本电脑和其它设备的无线充电产品。
目前国际上广泛采用的射频频率分布于低频(125KHz)、高频(13.54MHz)、超高频(850MHz~910MHz)和微波(2.45GHz)4个波段。无线射频识别(RFID)通常使用超高频波段的频率,而Wi-Fi信号则是使用频率为2.4GHz的微波。MIT研究小组在进行无线电力传输实验时采用的频率为4~10MHz。据说Powercast公司曾尝试过使用上述各种波段的射频电波进行电力传输,但只有当频率为 900MHz左右时接收到的能量最强。
射频电能传输与老式的矿石收音机的收音过程相似。矿石收音机自身没有直流电源,它利用天线接收来自电台的载波,经过检波后在听筒中产生音频电流。Powercast公司声称,这个无线充电系统绝不比一部收音机复杂,而且造价低廉,基本接收装置成本只需5美元。依赖这样的技术优势,Powercast公司已与手机、MP3、汽车配件、体温表、助听器及人体植入仪器等产品的百多家生产厂商签署了合作协议,还会与飞利浦合作在今年年内推出无线充电的LED电筒、明年推出包括键盘/鼠标在内的更多无线电脑外设。
无线充电的问题
Q:请问目前的无线充电技术的充电器和接收器的最远距离是多少?例如手机无线充电。
A:目前这项技术的最远输电距离还只能达到2.7米。产业化之后,可能还要小一点。