什么是GPU
GPU英文全称Graphic Processing Unit,中文翻译为“图形处理器”,是一种专门用来处理在个人电脑、工作站或游戏机上那些影像运算工作的微处理器。
GPU使显卡减少了对CPU的依赖,并分担了部分原本是由CPU所担当的工作,尤其是在进行3D图形处理时,功效更加明显。GPU所采用的核心技术有硬件座标转换与光源、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素256位渲染引擎等。
GPU可以整合在显卡上,或者直接集成到主板上。
GPU的工作原理
简单说GPU就是能够从硬件上支持T&L(Transform and Lighting,多边形转换与光源处理)的显示芯片,因为T&L是3D渲染中的一个重要部分,其作用是计算多边形的3D位置和处理动态光线效果,也可以称为“几何处理”。一个好的T&L单元,可以提供细致的3D物体和高级的光线特效;只不过大多数PC中,T&L的大部分运算是交由CPU处理的(这就也就是所谓的软件 T&L),由于CPU的任务繁多,除了T&L之外,还要做内存管理、输入响应等非3D图形处理工作,因此在实际运算的时候性能会大打折扣,常常出现显卡等待CPU数据的情况,其运算速度远跟不上今天复杂三维游戏的要求。即使CPU的工作频率超过1GHz或更高,对它的帮助也不大,由于这是PC本身设计造成的问题,与CPU的速度无太大关系。
GPU与DSP的区别
GPU在几个主要方面有别于DSP(Digital Signal Processing,简称DSP(数字信号处理)架构。其所有计算均使用浮点算法,而且目前还没有位或整数运算指令。此外,由于GPU专为图像处理设计,因此存储系统实际上是一个二维的分段存储空间,包括一个区段号(从中读取图像)和二维地址(图像中的X、Y坐标)。此外,没有任何间接写指令。输出写地址由光栅处理器确定,而且不能由程序改变。这对于自然分布在存储器之中的算法而言是极大的挑战。最后一点,不同碎片的处理过程间不允许通信。实际上,碎片处理器是一个SIMD数据并行执行单元,在所有碎片中独立执行代码。
尽管有上述约束,但是GPU还是可以有效地执行多种运算,从线性代数和信号处理到数值仿真。虽然概念简单,但新用户在使用GPU计算时还是会感到迷惑,因为GPU需要专有的图形知识。这种情况下,一些软件工具可以提供帮助。两种高级描影语言CG和HLSL能够让用户编写类似C的代码,随后编译成碎片程序汇编语言。Brook是专为GPU计算设计,且不需要图形知识的高级语言。因此对第一次使用GPU进行开发的工作人员而言,它可以算是一个很好的起点。Brook是C语言的延伸,整合了可以直接映射到GPU的简单数据并行编程构造。经 GPU存储和操作的数据被形象地比喻成“流”(stream),类似于标准C中的数组。核心(Kernel)是在流上操作的函数。在一系列输入流上调用一个核心函数意味着在流元素上实施了隐含的循环,即对每一个流元素调用核心体。Brook 还提供了约简机制,例如对一个流中所有的元素进行和、最大值或乘积计算。Brook还完全隐藏了图形API的所有细节,并把GPU中类似二维存储器系统这样许多用户不熟悉的部分进行了虚拟化处理。用Brook编写的应用程序包括线性代数子程序、快速傅立叶转换、光线追踪和图像处理。利用ATI的X800XT和Nvidia的GeForce 6800 Ultra型GPU,在相同高速缓存、SSE汇编优化Pentium 4执行条件下,许多此类应用的速度提升高达7倍之多。
对GPU计算感兴趣的用户努力将算法映射到图形基本元素。类似Brook这样的高级编程语言的问世使编程新手也能够很容易就掌握GPU的性能优势。访问GPU计算功能的便利性也使得GPU的演变将继续下去,不仅仅作为绘制引擎,而是会成为个人电脑的主要计算引擎。