发布时间:2012-01-29 阅读量:6550 来源: 我爱方案网 作者:
igbt管
igbt管的基本结构
绝缘栅双极晶体管(IGBT)本质上是一个场效应晶体管,只是在漏极和漏区之间多了一个 P 型层。根据国际电工委员会的文件建议,其各部分名称基本沿用场效应晶体管的相应命名。
图1所示为一个N 沟道增强型绝缘栅双极晶体管结构,N+区称为源区,附于其上的电极称为源极。 N+ 区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P型区(包括P+和P一区)(沟道在该区域形成),称为亚沟道区(Subchannel region )。而在漏区另一侧的 P+ 区称为漏注入区(Drain injector ),它是 IGBT 特有的功能区,与漏区和亚沟道区一起形成 PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。
为了兼顾长期以来人们的习惯,IEC规定:源极引出的电极端子(含电极端)称为发射极端(子),漏极引出的电极端(子)称为集电极端(子)。这又回到双极晶体管的术语了。但仅此而已。
IGBT的结构剖面图如图2所示。它在结构上类似于MOSFET ,其不同点在于IGBT是在N沟道功率MOSFET 的N+基板(漏极)上增加了一个P+ 基板(IGBT 的集电极),形成PN结j1 ,并由此引出漏极、栅极和源极则完全与MOSFET相似。
图1igbt管 基本结构
由图1可以看出,IGBT相当于一个由MOSFET驱动的厚基区GTR ,其简化等效电路如图3所示。图中Rdr是厚基区GTR的扩展电阻。IGBT是以GTR 为主导件、MOSFET 为驱动件的复合结构。
沟道IGBT的图形符号有两种,如图2所示。实际应用时,常使用图2-55所示的符号。对于P沟道,图形符号中的箭头方向恰好相反,如图2所示。
IGBT 的开通和关断是由栅极电压来控制的。当栅极加正电压时,MOSFET 内形成沟道,并为PNP晶体管提供基极电流,从而使IGBT导通,此时,从P+区注到N一区进行电导调制,减少N一区的电阻 Rdr值,使高耐压的 IGBT 也具有低的通态压降。在栅极上加负电压时,MOSFET 内的沟道消失,PNP晶体管的基极电流被切断,IGBT 即关断。
正是由于 IGBT 是在N 沟道 MOSFET 的 N+ 基板上加一层 P+ 基板,形成了四层结构,由PNP-NPN晶体管构成 IGBT 。但是,NPN晶体管和发射极由于铝电极短路,设计时尽可能使NPN不起作用。所以说, IGBT 的基本工作与NPN晶体管无关,可以认为是将 N 沟道 MOSFET 作为输入极,PNP晶体管作为输出极的单向达林顿管。
采取这样的结构可在 N一层作电导率调制,提高电流密度。这是因 为从 P+ 基板经过 N+ 层向高电阻的 N一层注入少量载流子的结果。 IGBT 的设计是通过 PNP-NPN 晶体管的连接形成晶闸管。
igbt管好坏的检测
igbt管的好坏可用指针万用表的Rxlk挡来检测,或用数字万用表的“二极管”挡来测量PN结正向压降进行判断。检测前先将IGBT管三只引脚短路放电,避免影响检测的准确度;然后用指针万用表的两枝表笔正反测G、e两极及G、c两极的电阻,对于正常的IGBT管(正常G、C两极与G、c两极间的正反向电阻均为无穷大;内含阻尼二极管的IGBT管正常时,e、C极间均有4kΩ正向电阻),上述所测值均为无穷大;最后用指针万用表的红笔接c极,黑笔接e极,若所测值在3.5kΩl左右,则所测管为含阻尼二极管的IGBT管,若所测值在50kΩ左右,则所测IGBT管内不含阻尼二极管。对于数字万用表,正常情况下,IGBT管的C、C极问正向压降约为0.5V。
综上所述,内含阻尼二极管的IGBT管检测示意图如图所示,表笔连接除图中所示外,其他连接检测的读数均为无穷大。
如果测得IGBT管三个引脚间电阻均很小,则说明该管已击穿损坏;若测得IGBT管三个引脚间电阻均为无穷大,说明该管已开路损坏。实际维修中IGBT管多为击穿损坏。
图3igbt管
电磁炉常用igbt管型号及主要参数
目前,用于电磁炉的IGBT管主要由:AIRCHILD(美国仙童)、INFINEON(德国英飞凌)、TOSHIBA(日本东芝)等几家国外公司生产,各公司对IGBT管的型号命名不尽相同,但大致有以下规律:
1.管子型号前半部分数字表示该管的最大工作电流值,如:G40××××、20N××××就分别表示其最大工作电流为40A、20A。
2.管子型号后半部分数字则表示该管的最高耐压值,如:G×××150××、××N120x××就分别表示最高耐压值为1.5kV、1.2kV。
3.管子型号后缀字母含“D”则表示该管内含阻尼二极管。但未标“D”并不一定是无阻尼二极管,因此在检修时一定要用万用表检测验证,避免出现不应有的损失。 一只IGBT管的技术参数较多,包括反向击穿电压(BVceo)、集电极最大连续电流(Ic)、输出功率、工作频率等参数。例:G40N150D
反向击穿电压BVceo(V) 1500
集电极最大连续电流Ic(A) 40
工作电压(V) 1000
输出功率(w) >2000
工作频率(kHz) <100
栅板门限电压UGe。(V) 5.5
集、射极间饱和电压Uce(v) 3.5
集、射极间是否有阻尼保护二极管 内含阻尼保护二极管
但在实际修理中,一般只需了解其反向击穿电压(BVceo,又称最高耐压)、集电极最大连续电流(Ic,简称最大电流)及管内是否有阻尼二极管即可。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。
随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。
对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。
在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。
其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!