随着终端应用要求更加严苛,先进的CCD图像传感器变得日益关键

发布时间:2018-09-18 阅读量:759 来源: 我爱方案网 作者: sunny编辑

尽管基于CMOS技术的图像传感器在许多应用中已得到广泛应用,但一些要求严苛的工业成像应用仍需要CCD图像传感器独有的性能。
 
举一个例子,关键的平板显示器生产线终端检测仍然主要由采用CCD的相机来执行,因为它们能提供高分辨率和出色的图像均匀性,这是目前CMOS图像传感器技术无法提供的。
 
这一类的检测通常由使用基于安森美半导体的2900万像素(Mp),35 mm光学格式的KAI-29050图像传感器等器件的相机来执行。然而,平板显示器分辨率越来越高,用来检测它们的相机分辨率也需要相应的提升。为满足这一需求并保留标准的35 mm光学格式,需要既能减小像素尺寸,同时又能保留应用所需的关键性能和图像均匀性规格的全新像素设计。
 
对高性能、高分辨率成像的需求
 
如今,成像推动了工业应用的生产力效益,从交通监控、车牌识别,到条形码扫描、机器人引导、机器视觉等等。尽管每种应用都有其独特的需求(一些需要高帧速率,另一些需要宽动态范围、微光灵敏度或某个不同的关键参数),一些应用主要需要最高级别的图像细节,要求开发具有非常高分辨率的图像传感器。
 
一个很好的例子是平板显示器的生产线终端检测,这个流程是要确认每个显示像素中红、绿和蓝三个子元素都能正常工作。随着显示器的应用在移动设备、平板电脑、电视机、车辆、监控器等更多领域中不断扩展,这些显示器的分辨率也在不断提高,从1080p到4k/超高清,甚至更高。这对在制造过程中用于监测这些显示器的相机提出了独特的要求,它需要提供能够分解显示器中存在的附加像素和子结构所需的细节,而无需牺牲该应用所需的图像质量和均匀性。
 
随着终端应用要求更加严苛,先进的CCD图像传感器变得日益关键
图1:用相机检测平板显示器
 
高分辨率成像的其它例子还包括高端监控(以足够放大任何一个位置的分辨率采集宽阔视域图像)和航拍(更高的分辨率可提供额外的成像细节,或让飞机能够飞得更高并减少飞行次数)。但是在所有这些例子中,应用不仅需要非常高的分辨率,而且还需要非常高的图像质量,可通过图像均匀性、噪声、动态范围等规格来衡量。
 
鉴于这种综合需求,这套应用一直以来凭借基于Interline Transfer CCD(ITCCD)技术的图像传感器,即使扩展到大的光学格式,它也能保留关键的成像性能参数。这一技术能够以非常高的图像均匀度捕获图像,且真正的全局快门设计能够捕获运动场景,而不会引入成像伪影。此外,该技术可提供宽曝光范围和低暗电流,能够实现从几微秒到一秒或更长时间范围内的图像曝光。
 
Interline Transfer CCD技术用于开发高分辨率、大格式图像传感器已超过15年,其分辨率随市场需要逐渐提高。例如,2003年的KAI-11000图像传感器以35 mm光学格式提供1100万像素的分辨率;但到2011年,这种相同的光学格式几乎可支持三倍的分辨率。
 
随着终端应用要求更加严苛,先进的CCD图像传感器变得日益关键
图2:35 mm光学格式下ITCCD分辨率的提升
 
在保留光学格式的同时提高分辨率的这种进步,对于实现这些应用中采用相机的简化的现场升级非常重要,因为在部署更高分辨率的相机时,相机的放置位置和镜头都无需变动。
 
严苛要求带来重大设计挑战
 
为了在保留35 mm光学格式的同时,将器件(例如KAI-29050)的分辨率从现有的2900万像素继续提升,就需要更小的像素格式,以便将更多像素放置于给定区域中。但为同时保留这一较小像素中的关键成像参数,如图像均匀性、动态范围和底噪,除了简单地缩小尺寸外,还需要提升像素设计。
 
随着终端应用要求更加严苛,先进的CCD图像传感器变得日益关键
图3:设计挑战
 
随着器件中像素的增加,除非器件的输出带宽能够增加,否则总体帧速率将会降低(这可能也是某些应用所需要的)。维持与当前传感器和相机的向后兼容对于帮助相机制造商和终端客户简化所需的升级路径以支持并采用新器件至关重要。
 
35 mm光学格式高性能ITCCD传感器
 
安森美半导体的KAI-43140图像传感器提供了如何满足这些设计挑战,以35 mm格式为要求严苛的应用提供更高分辨率的范例。新器件采用全新的4.5 µm ITCCD像素,以35 mm光学格式提供4300万像素,相较于广泛应用的2900万像素KAI-29050,分辨率增加了50%。然而,即使采用这种较小的像素尺寸,关键的成像性能水平任然得以保留(包括高拖尾抑制和超过60dB的线性动态范围),并且通过采用先进工艺设计,消除整个类别下的均匀性伪影,图像均匀性得到实际的提升。
 
更新了的输出放大器可将4分接头器件的带宽增加50%,尽管分辨率提高,却仍可提供与2900万像素器件相同的最终帧速率。由于KAI-43140仍基于ITCCD技术,因此它保留了电子快门和广泛曝光支持等特性,这些都是该技术的标志性特性。
 
重要的是,KAI-43140采用与KAI-29050相同的封装,让当前的相机设计仅需稍作电气变更即可支持新器件。这大大降低了相机制造商的设计风险,并使他们能够以更低的成本更快地将具有更高分辨率和性能的相机投入市场。
 
总结
 
开发满足高级工业应用严苛要求的成像传感器,需要的远不止简单地将更多像素“拽”到更小的封装中。通过采用先进的像素设计,可以在给定光节点提供更高的分辨率而无需牺牲所需的性能。
 
随着终端应用要求更加严苛,先进的CCD图像传感器变得日益关键 
图4:安森美半导体的大格式ITCCD图像传感器
 
然而即使有了这些提升,重要的是要认识到“最新”的成像器件并不一定是适用于所有应用的“最佳”器件(即使是针对需要非常高分辨率的应用)。不仅针对分辨率拥有不同的选择,而且针对光灵敏度、动态范围、帧速率、甚至价格等参数拥有不同的选择对于确定最合适某个给定应用的图像传感器(和成像技术)是至关重要的。这凸显了拥有广泛器件产品阵容的重要性(即使是专注于一组特定的应用,如需要非常高的分辨率),并强调了使用Interline Transfer CCD等技术持续开发全新产品的需求。
相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"