人工智能之AdaBoost算法

发布时间:2018-06-15 阅读量:1401 来源: 我爱方案网 作者: Miya编辑

人工智能之机器学习主要有三大类:分类/回归/聚类。今天我们重点探讨一下ID3算法。 


Hunt、Marin、和 Stone于1966年研制了一个概念学习系统CLS, 可以学习单个概念,并用此学到的概念分类新的实例。John Ross Quinlan(悉尼大学)于1983年研制了ID3算法。



ID3算法是决策树的一种,它是基于奥卡姆剃刀原理的,即用尽量用较少的东西做更多的事。


ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。


ID3算法概念:
ID3(Iterative Dichotomiser 3),即迭代二叉树3代,该算法是一种贪心算法,用来构造决策树【请参加人工智能(23)】。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续这个过程,直到生成的决策树能完美分类训练样例。



ID3算法核心:
ID3算法核心是“信息熵”。ID3算法通过计算每个属性的信息增益,认为信息增益高的是好属性,每次划分选取信息增益最高的属性为划分标准,重复这个过程,直至生成一个能完美分类训练样例的决策树。



ID3算法本质:

在信息论中,期望信息越小,那么信息增益就越大,从而纯度就越高。ID3算法本质是以信息增益来度量属性的选择,选择分裂后信息增益最大的属性进行分裂。该算法采用自顶向下的贪婪搜索遍历可能的决策空间。


在决策树的每一个非叶子结点划分之前,先计算每一个属性所带来的信息增益,选择最大信息增益的属性来划分,因为信息增益越大,区分样本的能力就越强,越具有代表性,很显然这是一种自顶向下的贪心策略。



ID3算法步骤:
计算各属性的信息增益,找出最大者为根节点 
1)先验熵:没有接收到其他属性时的平均不确定性;
2)后验熵:接收到输出符号Vj时关于信源的不确定性 ;
3)条件熵:对后验熵在输出符号集V中求期望,接收到全部符号后对信源的不确定性 ;
4)信息增益:先验熵与条件熵的差,是信宿端所获得信息量;
5)对剩余属性重复上述步骤。


ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定集合的测试属性。对被选取的测试属性创建一个节点,并以该节点的属性标记,对该属性的每个值创建一个分支据此划分样本。
具体算法流程如下:



ID3优点:
1)   算法结构简单;
2)   算法清晰易懂;
3)   非常灵活方便;
4)   不存在无解的危险;

5)   可以利用全部训练例的统计性质进行决策,从而抵抗噪音。


ID3缺点:
1)    处理大型数据速度较慢,经常出现内存不足;
2)    不能处理连续型数据,只能通过离散化将连续性数据转化为离散型数据;
3)    不可以并行,不可以处理数值型数据;
4)    只适用于非增量数据集,不适用于增量数据集,可能会收敛到局部最优解而非全局最优解,最佳分离属性容易选择属性值多一些的属性;
5)    没有对决策树进行剪枝处理,很可能会出现过拟合的问题。

注: ID3(并行)和ID3(number)解决了缺点3)的2个问题。


ID3应用场景:
决策树ID3算法是一个很有实用价值的示例学习算法,它的基础理论清晰,算法比较简单,学习能力较强,适于处理大规模的学习问题,是数据挖掘和知识发现领域中的一个很好的范例,为后来各学者提出优化算法奠定了理论基础。ID3算法特别在机器学习、知识发现和数据挖掘等领域得到了极大发展。

结语:

ID3算法是基本的决策树构建算法,作为决策树经典的构建算法,具有算法结构简单、理论清晰易懂、学习能力较强和灵活方便的特点。但也存在着不能处理连续型数据,不适用于增量数据集,处理大型数据速度较慢,可能会出现过拟合等缺点。ID3算法在世界上广为流传,得到极大的关注。ID3算法特别在机器学习、知识发现和数据挖掘等领域得到了极大发展。


文章来源:OFweek人工智能网

相关资讯
“中国芯”逆袭时刻:新唐携7大新品打造全场景AIoT解决方案矩阵

在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。

半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。

从ASMI财报看行业趋势:AI芯片需求爆发如何重塑半导体设备市场?

作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。

车规级SerDes国产替代提速:解析纳芯微NLS9116/NLS9246技术优势与市场潜力

随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。